
VFComb 1.3

the program for the designers of the virtual fonts

A.S.Berdnikov
Institute of Analytical Instrumentation

Rizsky pr. 26, 198103 St.Petersburg, Russia
email: berd@ianin.spb.su

June 22, 1996

Introduction 3

1 Command-line parameters 4
1.1 Script file name . 4
1.2 Variables . 5
1.3 Other parameters . 6
1.4 Responce files . 7
1.5 Environment variable VFCOMB . 7

2 Script file commands 7
2.1 Extensions of .vpl files . 8

2.1.1 Numerical values . 8
2.1.2 String values . 11
2.1.3 Variables . 12
2.1.4 Conditional operators . 14
2.1.5 Other operators . 17

2.2 MAPFONT or FONT . 17
2.3 CHARACTER or CHAR . 21

2.3.1 CHARACTER/SETDVI . 24
2.3.2 CHARACTER/VARCHAR . 25

2.4 LIGTABLE . 26
2.5 OUTPUT . 27
2.6 HEADER . 28
2.7 Additional commands . 32

1

2.7.1 VTITLE . 32
2.7.2 TBFUNITS and TBFSIZE 33
2.7.3 BOUNDARYCHAR or BCHAR 33
2.7.4 SETMAPFONT and SETTFMFONT 33
2.7.5 DISCARDCHAR and NOTAUTOADDCHAR 34
2.7.6 OPTION . 35
2.7.7 SAVETABLE . 37

3 VFComb applications 37
3.1 Virtual fonts for TEX formats with national alphabets 37
3.2 Virtual fonts for colored printing 39
3.3 Substitution of .pk fonts instead of Postscript fonts 39

Acknowledgements 40
Acknowledgement I . 40
Acknowledgement II . 41
Acknowledgement III . 41
Acknowledgement IV . 41

References 41

2

Introduction

The MS DOS program VFComb enables to design the virtual fonts for TEX,
LATEX, etc., using already existing real or virtual fonts [1]1 in a more flexible
manner than the direct manipulations with .vpl files. It simplifies the process of
combining real fonts into the virtual font and makes the debugging of the virtual
fonts more simple and less time consuming. The main purpose of this program
was to facilitate the integration of CM-fonts with cyrillic LL-fonts created by
O.Lapko and A.Khodulev [2, 3] but it can be used for other applications too2.

The characteristic feature of the program is that it can assemble the ligature
tables and metric information from various fonts and combine it with the user-
defined metric information and ligature/kerning data. The program uses the
information from .tfm files (converted to ASCII format by the utility TFtoPL)
and the ASCII data files created by the User, and produces the ASCII .vpl file
on its output. The .vpl file can be converted later to the virtual font using the
utility VPtoVF.

VFComb supports the full syntaxis of .pl and .vpl files as it was defined
by D.E.Knuth [1] and adds new commands like numerical variables, pseudo-
arithmetics operations and conditional operators, which simplifies the design of
the virtual fonts. The typical virtual font operations are performed automati-
cally and require a compact VFComb script file. The VFComb script files have
flexible structure so that just the same script files can be used to create the full
generic font family.

The commands from the VFComb script file enables:

• specify the information about the mapping table between the characters
of the virtual font and the real fonts;

• specify the explicit sequences of DVI-commands substituted instead of
some characters of the virtual font;

• extract metric information and ligature tables from the .pl files (converted
from .tfm files) which describe the properties of the real fonts;

• add user-defined metric information and ligature tables (for example, the
ligature and kerning data for the pairs of characters corresponding to
different real fonts);

• include automatically new characters if these characters are connected
by the attributes VARCHAR, NEXTLARGER or ligature table data with the
characters already included into the virtual font;

1It is assumed that you are familiar with the concept of the virtual fonts and with the
article [1]. If it is not so, it is highly recommended to read [1] before you proceed further.

2Since this MS DOS program is written on Borland Pascal and uses some specific features
of this language, it is hardly portable “as it is” to any other platform, but to my mind it is
not too difficult to transfer it to portable ANSI C (volunteers are welcome).

3

• insert automatically the DVI-commands which correct the DVI-cursor po-
sition if the metric information from the virtual font is different from that
for the real font;

• create the output .vpl file which combines all these data.

All input and output files are the ordinary ASCII files. The command line
of the program specifies the name of the script file (the script file contains the
commands which control the work of the program), and, may be, defines some
variables which are analyzed and used later inside the script file. The output of
the program is the .vpl file which contains all information necessary to create
the virtual font using the utility VPtoVF and the .log file which summarizes
all printed messages and all operations performed by VFComb.

1 Command-line parameters

The command line contains the list of parameters which are separated by spaces
(the body of the parameter should contain no spaces). The following parameters
can be specified:

• the name of the script file (the obligatory parameter);

• the definition of some variables which are used later in the script file
(variable specifications always contain the character ‘=’ in its body);

• the name of the log-file, the names of the directories which used as a source
for the input files, the directory for the output files, etc. (these parameters
start with the character ‘/’3).

The order of the parameters is of no sence4. The responce files (see section 1.4)
specified in a form ‘@filename’ and DOS environment variable VFCOMB (see sec-
tion 1.5) can be used to define the parameters which are too long or which are
specified too often to be typed manually at the command line.

1.1 Script file name

The parameters which specify the name of the log-file, the names of the direc-
tories which are used as a source for the input files, the directory for the output
files, etc., start with the character ‘/’ (the characters ‘!’, ‘-’, ‘+’ can be used as

3The characters ‘!’, ‘-’, ‘+’ can be used as well.
4The only exception: if the .log file name specified by the command line parameter /o does

not contain the explicit directory specification, the directory specified by the parameter /o is
used only if this parameter is specified before the parameter /l (the command line parameters
/l and /o are described in section 1.3).

4

well). The values of variables specified at the command line contain the char-
acter ‘=’ in its body. The responce file name starts with the character ‘@’. All
other constructions are recognized as the script file name.

The script file is the main source of the commands which are processed by
VFComb and which control the creation of the output .vpl file. If the script
file name has no extension, the extension .tbf is added automatically. If the
script file name has no explicit directory specification and it is not found in
the current directory, VFComb looks for it in the directories specified by the
parameter /u.

The User should specify only one script file at the command line (previous
versions of VFComb enabled to specify several script files in the command line).
If several script files are specified (or if there are the command line parameters
which are not recognized by VFComb properly as the variable specifications,
responce file names, etc.), the new name redefines the previous one after the
warning message. If one needs to combine several .tbf files into one stream
of commands, the command LOADFILE (section 2.1.5) specified inside the script
file can be used to do it.

1.2 Variables

The script file commands can use the variables to specify the numerical and
text data. Usually the variables and their values are specified by the script file
commands described in section 2.1.3. This section considers how it is possible
to specify the variables and their values at the command line so that they can
be analyzed by the script file commands when the script file is processed by
VFComb.

The definition of the string variable and its initial value is performed by
the construction “name=value” — when such parameter is encountered in the
command line, a new string variable name is allocated, and the text string value
is assigned to it.

The numerical variables can be specified if the special suffix is added at the
end of the field value5:

• /r or /R corresponds to real variable;

• /F, /D, /H, /O, /B, /C correspond to 32-bit integer variable where /F means
face code value, /D means decimal value, /H means hexadecimal value, /O
means octal value, /B means binary value, /C means character code (integer
value);

• /f, /d, /h, /o, /b, /c correspond to the byte (8-bit integer) variable which
are usually used to define the character codes — similarly to integers, /f

5Usually it is not necessary since the User can allocate the numerical variables and assign
the numerical values to them just by analyzing the contents of the string variables specified
at the command line.

5

means face code, /d means decimal value, /h means hexadecimal value, /o
means octal value, /b means binary value, and /c means character code;

• /@F, /@D, /@H, /@O, /@B, /@C and their lowercase forms define the string
variable with the contents equal to decimal representation of correspond-
ing integer value — for example, the parameter ‘tmp=377/@O’ is equivalent
to ‘tmp=255’ (octal number 377 has the decimal representation 255). The
suffix ‘@’ is equivalent to ‘@D’ and ‘@d’, and all three specifications are of
no use since ‘S=12345/@D’ is just the same as ‘S=12345’.

The contents of the field value is to be in agreement with the suffix specification
(see section 2.1.1 for more details). Examples:

vfcomb fntnam=CMR10 ... — string variable;

vfcomb rval=3.14159/r ... — real variable;

vfcomb ival=CDEF/H ... — integer variable with hexadecimal value;

vfcomb cval=X/c ... — byte variable which is the character code for "X".

1.3 Other parameters

The parameters which specify the log-file name, etc., start with one of the
characters ‘/’, ‘!’, ‘-’, ‘+’ followed by the parameter identifier (a single character)
and the parameter value. The parameter identifier and the parameter value can
be separated by ‘:’ or ‘=’ to achieve better readability. Example:

vfcomb ... /l:vfcomb.log -u=c:\myinput;c:\ !oOUTPUT\ ...

The previous version of VFComb used a lot of such parameters but now most of
them are moved inside the script file. The following parameters can be specified
at the command line:

• /u=list-of-dirs — specifies the list of directories separated by ‘;’ which are
used to search for the input files if the input file is absent in the currect
directory. Several parameters /u can be specified — in this case they are
joined together. The maximum number of the search directories is 20, and
the new emTEX directory search algorithm (see emTEX documentation) is
not implemented.

• /l=log-file-name — specifies the name for the .log file which summarizes
the operations performed by VFComb. By default the name scriptfile.LOG
is used, but if the script file is unknown when the first VFComb message
is printed, the .log file has the name VFCOMB.LOG.

• /o=output-dir — specifies the directory where the output files (.vpl and
.log files) are to be placed if their directories are not specified explicitly.

6

1.4 Responce files

The User can specify the construction ‘@filename’ among the list of the command
line parameters which means that the contents of the file filename is added to
the contents the command line.

Each line of the responce file is interpreted as a separate parameter. The
initial spaces of the line are omitted, and the characters after the first space
which terminates the parameter are omitted too. The lines which start from
the characters ’%’, ’;’, ’*’ and the empty lines are ignored.

The responce files can be nested in each other (that is, the responce file can
have the line @filename1 again) but the depth of their nesting cannot be greater
than 5.

1.5 Environment variable VFCOMB

The User can define the DOS environment variable VFCOMB using the command

SET VFCOMB=......

The contents of this variable is added at the beginning of the command line. As
a result, the contents of the command line redefines the default specifications
established by the environment variable VFCOMB if some parameters are specified
twice.

2 Script file commands

The VFComb syntaxis is very close to the syntaxis of .vpl files (it enables to
economize the program code since VFComb is to read and to analyze the .vpl
files in any case). That is, the .tbf, .pl and .vpl files are composed from the
entries specified in a form

(PROPERTYNAME VALUE)

where the VALUE can contain nested list structures as well.

The following extensions of .pl and .vpl syntaxis [1] are used by VFComb:

• new types of numerical constants;

• numerical variables;

• pseudo-arithmetical expressions;

• string variables and string expressions;

• conditional operators.

7

These commands are described in details in section 2.1.

The commands specific to VFComb .tbf files enable to specify the following
data:

• the name of the virtual font (actually the name of the output .vpl file);

• the header data which is specified at the beginning of the virtual font;

• the assignment (if necessary) the numerical values to symbolic variables
used in specification of other user defined data;

• the table(s) for mapping the characters of the real fonts into the characters
of the virtual font;

• the additional ligature table(s) (if present) which contain the ligature and
kerning information for the pairs of characters corresponding to different
real fonts;

• the metric information, ligature and kerning tables, etc., for the characters
of the real fonts;

• the options which control the process of creation of the virtual font.

2.1 Extensions of .vpl files

The following commands and extensions of numerical data specifications are
valid for VFComb script files (.tbf files) and for .pl and .vpl files as well.
These commands are processed inside VFComb “mouth” subroutines, and as a
result they are invisible for the subroutines which analyze the syntaxis of .tbf,
.pl and .vpl files.

The structure of the algorithm which analyzes the syntaxis of the input
commands implies some restrictions on the way these preprocessor commands
can be used in the source files. The preprocessor commands can be inserted at
any point where the argument (......) is suitable. So, they can be specified
on the upper level of braces, they can be specified as the argument of the
command (CHARACTER ...) since it has the sub-list arguments, but they cannot
be specified inside the command (CHECKSUM ...) since there are no sub-list
agruments for this command.

2.1.1 Numerical values

The syntaxis of .vpl files enables to use the numerical data of different forms.
The numerical data can be specified as real (floating point) values, 32-bit inte-
ger values and 8-bit integer values. Depending of the context, real or integer
values should be used, and the range if the accepted integer values depends on

8

context also (say, character code cannot be greater than 255 while the checksum
parameter is a full 32-bit integer).

Each value starts with the prefix letter preceeded by a space and separated
from the following actual value by a space (as usually, there may be as many
spaces as you need at any place where at least one space is allowed). The prefix
character defines the type of the numerical value, and the following types can
be used:

R value — real values (R 0.27182);

D value — decimal integer values (D 123456);

O value — octal integer values (O 377);

H value — hexadecimal integer value (H 07FA);

C character — character numerical code (C x is the code value for character
‘x’);

F ident — Xerox face code, i.e., an integer value which is substituted by a
3-letter identifier (F LIE = D 17) where the full list of the face codes
assigned to the integers from 0 to 17 is: MRR, MIR, BRR, BIR, LRR,
LIR, MRC, MIC, BRC, BIC, LRC, LIC, MRE, MIE, BRE, BIE, LRE,
LIE.

For VFComb input files in all places where the real values can be used,
the integer values can be used also, and in all places where 32-bit integers are
accepted, 8-bit integers are accepted too. VFComb also extends the set of prefix
letters so that more general and more flexible expressions can be constructed:

B value — binary integer value (B 011111111010);

V var-name — the value of some numerical (real or integer) variable (V
FntSize);

V- var-name — the negated value of some numerical (real or integer) variable
(V- FntSize);

V+ var-name (unary ‘+’) — just the same as V var-name (V+ FntSize);

V~ var-name — bit-by-bit negated value of an integer variable (V~ FntSize);

A+ value1 value2 — addition of two (real or integer) values (‘A+ D 2 D 2’ =
4);

A- value1 value2 — subtraction of two (real or integer) values (‘A- D 5 D 3’
= 2);

A* value1 value2 — multiplication of two (real or integer) values (‘A* D 5 D
3’ = 8);

9

A/ value1 value2 — division (real or integer) of two (real or integer) values
(‘A/ D 5 D 2’ = 2 for integers, ‘A/ R 5.0 R 2.0’ = 2.5 for real values);

A% value1 value2 — the residue of integer division (mod) of two integer or
real values (‘A% R 5.0 R 2.0’ = 1.0);

A! value1 value2 — bit-by-bit or operation between two integer values (‘A!
B 1010 B 0011’ = B 1011 = 11);

A& value1 value2 — bit-by-bit and operation between two integer values (‘A&
B 1010 B 0011’ = B 0010 = 2);

A^ value1 value2 — bit-by-bit xor operation between two integer values (‘A^
B 1010 B 0011’ = B 1001 = 9);

A> value1 value2 — right shift of integer value1 by value2 bits (‘A> B 1010
D 2’ = B 10 = 2);

A< value1 value2 — left shift of integer value1 by value2 bits (‘A< B 1010 D
2’ = B 101000 = 40);

-A value — unary ‘−’ (‘-A D 5’ = -5, ‘-A D -5’ = 5);

+A value — unary ‘+’ (‘+A value’ = value);

~A value — bit-to-bit negated integer value (‘~A B 1010’ = B 0101 = 5).

The arguments of the arithmetic expressions can be the arithmetic expressions
again which enables to build complex arithmetic forms (similar to polish nota-
tion) — unfortunately these forms are not suitable for fast human recognition.
The arithmetic operations A!, A&, A^, A>, A<, ~A, V~ can be used for integer
arguments and only at the places where the integer expression is required.

Although VFComb syntaxis enables to use complex string constructions (see
section 2.1.2), the values specified as the arguments of the prefix commands R,
D, O, F, C, H, B, V are always the primitive text strings (i.e., the sequences of
characters terminated by a space or the closing braces ‘)’). It means that the
expression ‘D @V ABC’ where ABC is the string variable with the value "99" is
illegal although one can assume that it is to be equivalent to ‘D 99’.

There are some serious reasons not to allow the string expressions to be the
arguments of the arithmetic constants. The simplest one is, for example, that
in this case it is impossible to convert the legal expression C @ into numerical
value D 64 as it is required by the rules of .vpl files. Nevertheless, to enable
to use such possibilities if necessary, the following prefix commands are added
which enable to perform the conversion of the string expressions into numerical
values:

D@ string — interprete string expression as a decimal integer value;

10

O@ string — interprete string expression as an octal integer value;

H@ string — interprete string expression as a hexadecimal integer value;

B@ string — interprete string expression as a binary integer value;

F@ string — interprete string expression as an integer face code;

C@ string — interprete string expression as a character code (string is to be
a single character);

R@ string — interprete string expression as a real value;

V@ string — interprete string expression as a name of a variable (real or
integer).

2.1.2 String values

Some .pl and .vpl commands require text strings as their arguments (com-
mands CODINGSCHEME, FAMILY, VTITLE, for example). VFComb extends the
set of numerical values so that the string values, string variables and string
expressions can be used together with the numerical ones. The specification
of the string variables and string expressions makes the specification of some
commands more flexible and enables to prepare efficient and compact VFComb
scripts.

The string constants (contrary to the numerical constants) have no special
prefix — they are just the sequences of characters which can be surrounded
by spaces. Contrary to that the string expressions start with the prefix ‘@’ —
which means that a string constant cannot starts from this letter but it does
not restrict the flexibility in specification of the string constants too much.

The following string operations can be used:

@V var-name — the value of some string variable defined previously (@V
HlpString) (essential note: the argument of the prefix command @V can
be the string expression itself like that of the prefix command V@ described
at the previous section);

@R real-value — the real numerical value converted to a text string (‘@R A/
R 1 R 7’ = "0.14285714286" since ‘A/ R 1 R 7’ = 1/7);

@D integer-value — the integer numerical value converted to decimal text
representation (‘@D O 377’ = "255");

@O integer-value — the integer numerical value converted to octal text rep-
resentation (‘@O D 255’ = "377");

@H integer-value — the integer numerical value converted to hexadecimal text
representation (‘@H D 255’ = "FF");

11

@B integer-value — the integer numerical value converted to binary text rep-
resentation (‘@H D 255’ = "11111111");

@F string-value — extract font name from the string (‘@F cmr10’ = "cmr");

@P string-value — extract the string part after the font name from the string
which for legal font names is the font design size in pt (‘@P cmr10’ =
"10");

@U string-value — convert the string value to uppercase form (‘@U cMr10’ =
"CMR10");

@L string-value — convert the string value to lowercase form (‘@L cMr10’ =
"cmr10");

@+ string1 string2 — combines two strings into one string (‘@+ CMR 10’ =
"CMR10");

@ integer-value — string which consists from a single character with a spec-
ified code (integer-value is in a range 0–255);

@@ integer-value — string of the specified length composed from spaces;

@. — empty string (just the same as @@ D 0).

As usually the numerical and string values can be the complex expressions, not
only the elementary constants.

The sequences of string constants and string expressions separated by spaces
can be specified as the argument of the commands like FAMILY, CODINGSCHEME,
VTITLE. In this case the VFComb inserts a space between individual string
element and expands string expressions to a form of a string constants. As a
result the string composed from a sequence of words separated by spaces (where
multiple subsequent spaces are compressed into one space) can be constructed
and written into the output .vpl file.

2.1.3 Variables

As it was mentioned in sections 2.1.1 and 2.1.2, it is possible to allocate variables
and to assign the values for them so that these values can be analysed and used
later. The variables have different types: real, integer, character (byte) and
string. The usage of the variables and the values assigned to the variables are
to be in agreement with their type.

The operator which allocates a new variable has a form:

(VARIABLE (var-type var-name var-value))

where

12

• var-type is one of the identifiers REAL, INTEGER, CHARACTER (CHAR, BYTE)
or STRING, which define the type of the variable;

• var-name is the name of the variable which is to be different from the
names of the other variables;

• var-value is the real, 32-bit integer, 8-bit integer or string expression which
defines the initial value of the variable.

Example:

(VARIABLE (CHARACTER Del D 127))
(VARIABLE (REAL Kern#KKK R -0.3333))

It is possible to allocate more than one variable inside one operator VARIABLE
by specifying several sublists inside it:

(VARIABLE
(CHARACTER Del D 127)
(REAL Kern#KKK R -0.3333)
......

)

The variable names are case-sensitive: the variables with the names Var
and vAr are different. The variable names can be composed using arbitrary
characters, not only latin letters and digits. Nevertheless, it is better not to use
the names started from ‘@’ — otherwise it is possible to get a strange behaviour
for the prefix commands V@ and @V (the arguments of these commands are
analyzed as string expressions, and in this case the first letter ‘@’ is recognized
as the prefix of string operastion).

If the operator VARIABLE uses the name which was already used, the warning
message is printed and the old variable is deleted. The variable value can be
changed without the warning message by the operator ASSIGN which has the
form

(ASSIGN var-name var-value)

The type of the value var-value is to be in agreement with the trype of the
variable defined earlier. Only one variable can be changed in one operator
ASSIGN. Example:

(ASSIGN Del D 255)
(ASSIGN Kern#KKK R +1.51134)

It is possible also to allocate new vartiables and to assign their initial values
directly from the command line — see section 1.2 for more details.

13

2.1.4 Conditional operators

VFComb script files can contain the conditional IF-THEN-ELSE operators. The
following groups of conditional operators can be used:

• comparison of integer values;

• comparison of real values;

• comparison of string values;

• operators which check the existance of the variables;

• integer IF-CASE operators;

• string IF-CASE operators.

The depth of IF-THEN-ELSE-operators cannot exceed 50.

The general form of IF-operators is the following:

(IF-condition if-data)
.........
commands
.........

(ELSE)
.........
commands
.........

(ENDIF)

The general form of IF-CASE-operators is the following:

(IF-CASE-condition if-case-data)
(CASE case-value1)
.........
commands
.........
(BREAK)
(CASE case-value2)
.........
commands
.........
(BREAK)
.........

(ELSE)
.........
commands
.........

(ENDIF)

14

As usually, the ELSE-block can be skipped together with the command (ELSE).

Actually IF-commands and IF-CASE-commands are the preprocessor oper-
ators which are used by VFComb read-data subroutines to skip some blocks of
input data. IF-commands transfer the block after IF-command if some condi-
tion is fulfilled, and transfer ELSE-block if it is not fulfilled. IF-CASE-operators
check that if-case-data is equal to case-value and transfer the corresponding
block of commands further. The CASE-block is to be terminated by (BREAK)
— like C conditional operators the CASE-block is not terminated automatically
when the next (CASE ...) is encountered.

The following IF-conditions and IF-CASE-conditions can be used:

(IF integer-value) — checks that some integer expression is not equal to
zero;

(IF-NOT integer-value) — checks that some integer expression is equal to
zero;

(IF-ONE integer-value), (IF-TRUE integer-value) — just the same as the
command (IF integer-value);

(IF-ZERO integer-value), (IF-FALSE integer-value) — just the same as the
command (IF-NOT integer-value);

(IF-DEF var-name) — checks that some variable is defined already;

(IF-NDEF var-name) — checks that some variable is not defined still;

(IF-EQ integer1 integer2) — checks that integer1 = integer2;

(IF-NE integer1 integer2) — checks that integer1 6= integer2;

(IF-GT integer1 integer2) — checks that integer1 > integer2;

(IF-LT integer1 integer2) — checks that integer1 < integer2;

(IF-GE integer1 integer2) — checks that integer1 ≥ integer2;

(IF-LE integer1 integer2) — checks that integer1 ≤ integer2;

(IFR-EQ real1 real2) — compare two real values: real1 = real2;

(IFR-NE real1 real2) — compare two real values: real1 6= real2;

(IFR-GT real1 real2) — compare two real values: real1 > real2;

(IFR-LT real1 real2) — compare two real values: real1 < real2;

(IFR-GE real1 real2) — compare two real values: real1 ≥ real2;

15

(IFR-LE real1 real2) — compare two real values: real1 ≤ real2;

(IFS-EQ string1 string2) — compare two text strings: string1 = string2;

(IFS-NE string1 string2) — compare two text strings: string1 6= string2;

(IFS-GT string1 string2) — compare two text strings: string1 > string2;

(IFS-LT string1 string2) — compare two text strings: string1 < string2;

(IFS-GE string1 string2) — compare two text strings: string1 ≥ string2;

(IFS-LE string1 string2) — compare two text strings: string1 ≤ string2;

(IF-CASE integer-value) — integer IF-CASE-operator that checks that the
integer-value is equal to the argument of some (CASE integer) command
in its body;

(IF-CASE integer-value) — integer IF-CASE-operator that checks that the
integer-value is equal to the argument of some (CASE int-value) command
specified after it and before closing (ENDIF) operator;

(IFS-CASE string-value) — string IF-CASE-operator that checks that the
string-value is equal to the argument of some (CASE string) command
specified after it and before closing (ENDIF) operator.

Similarly to prefix commands V@ and @V (see sections 2.1.1 and 2.1.2), the
arguments of the conditions IF-DEF and IF-NDEF are analyzed as the string
expressions, not as the string constants (see section 2.1.2). The arguments of the
string IFS-commands and IFS-CASE-command are also processed as the string
expressions and the strings are converted to uppercase form before comparison.

Examples:

(IF-DEF FONTNAME)
(MESSAGE The variable FONTNAME = @V FONT)

(ELSE)
(VARIABLE (STRING FONTNAME CMR10))

(ENDIF)

(IF-TRUE V monospace)
(MESSAGE ‘MONOSPACE’ mode is active)

(ELSE) (LOADFILE kerndata.tbf)
(ENDIF)

(IF-CASE V FONTPITCH)
(CASE D 5)

(ASSIGN u# R 12.5

16

(BREAK)
(CASE D 6)

(ASSIGN u# R 14.0
(BREAK)

.........
(ELSE)

(MESSAGE Unknown FONTPITCH value)
(HALTPGM)

(ENDIF)

2.1.5 Other operators

There are other commands which can be useful for the logical structuring of the
input stream of VFComb commands:

(COMMENT text) — skip the text which can include arbitrary VFComb com-
mands provided that the opening and closing braces ‘(’ and ‘)’ are bal-
anced correctly.

(MESSAGE text) — print the text which may be the combination of string
elements and string expressions (see section 2.1.2) separated by spaces,
and can include opening and closing braces ‘(’ and ‘)’ if they are balanced
correctly, but it cannot exceed 255 characters.

(TYPEOUT text) — just the same as (MESSAGE text).

(LOADFILE filename) or (LOAD filename) — insert at this place the con-
tents of the file filemane (filename can be a string expression) from the
beginning and up to the end or up to the first command (ENDLOAD) en-
countered in it. If the extension of the filename is not specified explicitly,
the extension .tbf is added if the command LOADFILE is encountered dur-
ing the processing of script file .tbf, and the extension .pl is added if
the command LOADFILE is encountered during the processing of the .pl
corresponding to a real font metric data.

(ENDLOAD) — stop to read the contents of the current input file and return
the the previous file.

(ENDINPUT) — stop to read the input data stream;

(HALTPGM) — stop the program.

2.2 MAPFONT or FONT

The command MAPFONT describes the real fonts which are used in the virtual
font. One MAPFONT command should be specified for each real font used in the
virtual font.

17

The command MAPFONT assignes the integer index to the real font, and all
the commands which use the references to the real fonts refer to this index value.
It can also specify the processing modes for this font (some of them overwrites
the modes specified at the command OPTION described at the section 2.7.6) and
the standard mapping table for the characters extracted from this font — so
that the commands CHARACTER deascribed at section 2.3 becomes unnecessary
to great extend.

The command MAPFONT has the format:

(MAPFONT index (option1) (option2)...)

where the index is the integer value. The valid options are:

(FONTNAME filename) or (NAME filename) — specifies the name of the real
font (obligatory parameter).

(TFMINPUT filename) — specifies the name of the .pl file which is used to
load data about this font. The .pl file <fontname>.tbf is used if this
parameter is not specified where <fontname> is value of the parameter
FONTNAME defined above.

The command (TFMINPUT EMPTY) means that this is the font which con-
tains no characters at all. The command (TFMINPUT DUMMY) means that
this is the font which contains all the characters but with zero metric
information and without VARCHAR and NEXTLARGER attributes. In both
cases no .pl file is read by VFComb — the necessary font information is
generated automatically.

(FONTAT real-value) — specifies the parameter FONTAT transferred to .vpl
file (the default value (FONTAT R 1.0)). This parameter is also used
to re-calculate dimensional parameters from the .pl file according to
DESIGNUNITS and DESIGNSIZE from the header of the .vpl file.

(FONTAREA text-string) — specifies the parameter FONTAREA transferred to
.vpl file. This parameter specifies the explicit directory for corresponding
real font, and as a rule is not used since it restricts the flexibility of font
specification [1].

(CHECKSUM 32-bit-integer) — specifies explicitly the value FONTCHECKSUM —
the checksum of the .tfm file of this real font stored in the .vpl file.
Usually it is not necessary to specify this parameter explicitly since its
correct value is copied from the .pl file with the font metric data. When
the DVI-driver loads the virtual and the real fonts, the FONTCHECKSUM
from the .vpl file is compared with the checksum calculated for the .tfm
files, and the warning message is printed if these values are different (this
message shows that the versions of .vf and .tfm files may be different or
that the .tfm file may be damaged).

18

(FULL) , (7TO8), (8TO7), (7TO7), (8TO8), (JWNCYR), (CYRTUG) — these
parameters specify the default mapping table for this real font: according
to some rule the characters of the virtual font are mapped into the char-
acters of this real font if these characters of the real font are defined and
if the corresponding positions of the virtual font are not occupied still.

(FULL) — include in the virtual font all the characters from this font
so that the character codes are mapped to themselves;

(7TO8) — include in the virtual font the characters 0–127 from the
real font so that the character D 0 of the real font corresponds to the
character D 128 of the virtual font, the character D 1 of the real font
corresponds to the character D 129 of the virtual font, etc.;

(8TO7) — include in the virtual font the characters 128–255 from the
real font so that the character D 128 of the real font corresponds to
the character D 0 of the virtual font, the character D 129 of the real
font corresponds to the character D 1 of the virtual font, etc.;

(7TO7) — include in the virtual font the characters 0–127 from this
font so that the character codes are mapped to themselves;

(8TO8) — include in the virtual font the characters 128–255 from this
font so that the character codes are mapped to themselves;

(CYRTUG) — include in the virtual font the characters 128–175, 224–244
from this font so that the character codes are mapped to themselves
(CYRTUG coding scheme for cyrillic characters);

(JWNCYR) — include in the virtual font the characters 128–175, 224–
244 from this font so that the cyrillic characters for WNCYR cod-
ing scheme are mapped to cyrillic characters for CYRTUG coding
scheme.

(TRACE), (NOTRACE), (TRACE D integer) — specifies the level for printing
of the debugging information when the ligature tables of this font are
processed by VFComb.

(LIGTABLE) and (NOLIGTABLE) — include or do not include in the virtual
font the ligature tables of this font.

(PHANTOM) — assign attribute PHANTOM to all characters which are mapped to
this font, for which the attributes PHANTOM or NOPHANTOM are not specified
explicitly.

(NOPHANTOM) — switches off for this font the option PHANTOM specified by
the command OPTION (see section 2.7.6).

(AUTOTFMWIDTH) and (NOAUTOTFMWIDTH) — for the characters which are
mapped to this font and for which the attributes SIZECHAR and SIZEFONT

19

are specified, VFComb adds automatically the attribute AUTOTFMWIDTH or
the attribute NOAUTOTFMWIDTH, respectively, if such attribute is not spec-
ified explicitly (see command CHARACTER (section 2.3 for more details).

(AUTOTFMCHAR font-index) — for the characters which are mapped to this
font without explicit attributes TFMFONT, TFMCHAR or NOTFMDATA (see com-
mand CHARACTER (section 2.3 for more details), the attributes

(TFMFONT D font-index) (TFMCHAR D char-code)

are added automatically.

(AUTOTFMMAPCHAR font-index) — for the characters which are mapped to
this font without explicit attributes TFMFONT, TFMCHAR or NOTFMDATA (see
command CHARACTER (section 2.3 for more details), the attributes

(TFMFONT D font-index) (TFMCHAR D mapchar-code)

are added automatically.

(INCLUDECHAR (ident1)(ident2) ...) — specifies for this font the mode of
automatical including new charascters. The following ident values can be
used:

ALLCHAR — include automatically all the characters from the real fonts
even it is not specified explicitly in CHARACTER or MAPFONT commands;

LIGTABLE — include in the virtual font the characters which are listed
in the ligature tables specified for already included characters;

KRNDATA — include in the virtual font the characters which are listed
in a kerning data of the ligature tables specified for already included
characters;

LIGDATA — include in the virtual font the characters which are listed
in a ligature data of the ligature tables specified for already included
characters;

NOLIGTABLE — do not include in the virtual font automatically the
characters from the ligature table;

NEXTCHAR — include automatically new characters which are are con-
nected by the attribute NEXTLARGER with the already included char-
acters;

NONEXTCHAR — do not include new characters from the real fonts which
are connected by the attribute NEXTLARGER with the already included
characters.

(NEWDISCARD) — the underfined characters of this font are marked automat-
ically by the attribute DISCRAD in the global mapping table (see commands
CHARACTER (section 2.3) and DISCARDCHAR (section 2.7.5)).

20

(NONEWDISCARD) — the underfined characters of this font are not marked
automatically by the attribute DISCRAD in the global mapping table (see
commands CHARACTER (section 2.3) and DISCARDCHAR (section 2.7.5)).

Examples:

(MAPFONT D 0 (NAME CMR10) (7TO7) (NOLIGTABLE) ...)
(MAPFONT D 1 (NAME LHR10) (JWRCYR) (INCLUDELIG) ...)
......

2.3 CHARACTER or CHAR

The command CHARACTER specifies the mapping table between the characters
of the real fonts and the characters of the virtual fonts. It can also specify

• the sequence of DVI-commands substituted instead of the character from
the virtual font;

• the “phantom” output for some characters of the virtual font;

• the dimensional parameters (width, height, depth, italic correction) of the
character if they are not copied from the real font metric data and are not
calculated automatically for the sequences of DVI-commands;

• the correction of the DVI-pen position if the width of the character from
the real font is not equal to the width specified in .tfm file of the virtual
font;

• special attributes which are treated by VFComb then the default mapping
tables (see command MAPFONT from the section 2.2) and the automatical in-
cluding of new characters joined with already included characters (see the
commands MAPFONT/INCLUDECHAR (section 2.2) and OPTION/INCLUDECHAR
(section 2.7.6) are used.

The command CHARACTER has the following format:

(CHARACTER char-code (parm1) (parm2) (parm3) ...)

The 8-bit integer value char-code (see section 2.1.1) defines the character of
the virtual font which properties are defined by the sub-list parameters. The
parameters can be distributed among several CHARACTER commands with the
same 8-bit code — in this case they are joined together in one list.

The following parameters can be used:

(FONT index) or (SELECTFONT index) — specifies the real font into which
this character is mapped. The real font is identified by the integer value
index, and the relation between the index and the name of the real font is
defined by the command MAPFONT (see section 2.2). The default value for
FONT is set by the command SETMAPFONT (see section 2.7.4).

21

(CHAR char-code) or (SETCHAR char-code) — specifies the character of the
real font into which this character is mapped (the real font is defined by
the command FONT described above). If the metric data for this character
are not specified explicitly in .tbf file (see the commands below), it is
copied from the .pl file corresponding to the real font — or from the
character from the real font which is specified by the commands TFMFONT
and TFMCHAR if these attributes are defined.

(CHARWD real-value) — specifies the width of the virtual character.

(CHARHT real-value) — specifies the height of the virtual character.

(CHARDP real-value) — specifies the depth of the virtual character.

(CHARIC real-value) — specifies the italic correction of the virtual character.

(TFMFONT index) and (TFMCHAR char-code) — these two commands specify
the real font and the character from which the metric information is copied.
Their syntaxis is similar to the commands FONT/CHAR described above.
The default value for TFMFONT is set by the command SETTFMFONT (see
section 2.7.4).

The attributes TFMFONT/TFMCHAR are useful if it is necessary to make
the virtual fonts which are used for visualization of the .dvi file with
PostScript fonts which are substituted by some .pk fonts with a dif-
ferent metric properties (see section 3.3 for more details). The com-
mands MAPFONT (section 2.2) and OPTION (section 2.7.6) can specify these
atributes by default for the character if there are no explicit commands
TFMFONT, TFMCHAR or NOTFMDATA.

(NOTFMDATA) — specifies that the attributes TFMFONT and TFMCHAR cannot
be added automatically to this character (see corresponding arguments of
the commands MAPFONT (section 2.2) and OPTION (section 2.7.6)).

(AUTOTFMWIDTH) and (NOUTOTFMWIDTH) — these commands switch on/off
the automatic correction of the width of the virtual character if the met-
ric information from .vpl and .tfm files for the virtual font is differ-
ent from that specified for the real font characters (see the commands
TFMFONT/TFMCHAR described above and the section 3.3 for more informa-
tion).

The default value of this attribute can be specified using the commands
MAPFONT (section 2.2) and OPTION (section 2.7.6). If no (AUTOTFMWIDTH)
and (NOAUTOTFMWIDTH) attributes are specified using these commands,
the attribute (AUTOTFMWIDTH) is assumed.

(PKWIDTH width) — specifies the width of the character (width is the posi-
tive real value) which is used to correct the DVI-pen position when the

22

attribute AUTOTFMWIDTH is active and the commands TFMFONT/TFMCHAR
are specified. The value specified by PKWIDTH substitutes the data taken
from the character referenced by the commands FONT/CHAR or the data
calculated by VFComb for the sequence of DVI-commands (see the com-
mand SETDVI described below).

(DVI list-of-arguments) or (SETDVI list-of-arguments) — specifies the se-
quence of DVI-commands substituted instead of the character of the vir-
tual font. The arguments of this command are described in section 2.3.1.

The metric data for this virtual character can be specified explicitly by
the commands CHARWD, CHARHT, CHARDP, CHARIC described above. if these
data are absent,

• if the commands FONT and CHAR or if the commands TFMFONT and
TFMCHAR are defined, the metric data for the virtual character is
copied from corresponding character of the corresponding .pl file.

• if commands FONT/CHAR and TFMFONT/TFMCHAR are absent, the values
CHARWD, CHARHT and CHARDP are calculated automatically according
to the sequence of DVI-commands, and CHARIC is set to zero.

If the commands TFMFONT/TFMCHAR are specified and if AUTOTFMWIDTH
mode is active (by default or explicitly specified), the correction of the
width of the virtual character is is performed using

• the value of the parameter PKWIDTH if it is specified explicitly;

• the width of the character specified by the commands FONT/CHAR if
these commands are defined for the virtual character;

• the width of the the sequence of DVI-commands which is calculated
automatically by VFComb.

(VARCHAR list-of-arguments) — specifies the extensible character (usually
the mathematical delimiter). The arguments of this command are de-
scribed in section 2.3.2. The command VARCHAR cannot be used together
with the command NEXTLARGER.

(NEXTLARGER char-code) — specifies the character (usually the mathemati-
cal delimiter) which is “larger” than the current character. The references
NEXTLARGER cannot form the infinite cycles. The command NEXTLARGER
cannot be used together with the command VARCHAR.

(DISCARD) — specify the attribute DISCARD for the virtual font character
which means that this character cannot be used by default mapping ta-
bles (see command MAPFONT) and by automatic including of new virtual
font characters (see commands MAPFONT/INCLUDECHAR (section 2.2) and
OPTION/INCLUDECHAR (section 2.7.6).

23

(UNKNOWN) — default attribute which means that the character is not used by
the virtual font, but it can be added automatically when the default map-
ping table is used (see command MAPFONT described at the section 2.7.6)
or during the automatic including of new characters to the virtual font.

(PHANTOM) — specifies that the virtual character is displayed as a blank
space. It means that instead of the output of the real font character
or of the sequence of DVI-commands, the shift of the DVI-pen position
at a distance equal to the width of the virtual character is performed.
Corresponding DVI-commands are generated and inserted in .vpl file
automatically by VFComb. The attribute PHANTOM can be specified by
defaul using the commands MAPFONT (see section 2.2) and OPTION (see
section 2.7.6).

(NOPHANTOM) — swithches off the attribute PHANTOM specified by default with
the help of the commands MAPFONT/PHANTOM and OPTION/PHANTOM.

Similar to dimensional data specified for the .tbf commands LIGTABLE, HEADER,
etc., the dimensional parameters of the commands CHARWD, CHARHT, CHARDP,
CHARIC, PKWIDTH and of the sub-commands of the command SETDVI are specified
using the values TBFUNITS and TBFSIZE from the .tbf file (see section 2.7.2).

2.3.1 CHARACTER/SETDVI

The parameter DVI of the command CHARACTER specifies the the sequence of
DVI-commands substituted instead of the character from the virtual font. It
has the format

(SETDVI
(command1)
(command2)
......

)

where the following commands can be used:

(FONT index) or (SELECTFONT index) — makes this font active for the sub-
sequent CHAR commands. The font is identified by the integer value index,
and the name of the font with this index is defined using the command
MAPFONT (see section 2.2). if there are commands CHAR in the sequence of
DVI-commands, the command FONT is to be used before the first CHAR.

(CHAR char-code) or (SETCHAR char-code) — output the character char-co-
de from the real font specified by the last command FONT starting from
the current DVI-pen position and to move the DVI-pen position to the
right at the distance equal to the width of the character.

24

(RULE height width) or (SETRULE height width) — output the rule (i.e., a
black rectangle) with the specified height and width (height and width are
positive real values) starting from the current DVI-pen position and to
move the DVI-pen position to the right at the distance equal to the rule
width.

(RIGHT dist) or (MOVERIGHT dist) — move current DVI-pen position to the
right at the specified distance dist which is to be a real (positive or nega-
tive) value.

(LEFT dist) or (MOVELEFT dist) — move current DVI-pen position to the
left at the specified distance dist which is to be a real (positive or negative)
value.

(UP dist) or (MOVEUP dist) — move current DVI-pen position up at the
specified distance dist which is to be a real (positive or negative) value.

(DOWN dist) or (MOVEDOWN dist) — move current DVI-pen position down at
the specified distance dist which is to be a real (positive or negative) value.

(PUSH) — remember the current DVI-pen position (to be restored by the
subsequent command (POP).

(POP) — restore the DVI-pen position saved earlier by the command (PUSH).
The commands (PUSH) and (POP) should be properly nested and balanced
like the parentheses.

(SPECIAL text-string) — the text-string is interpreted similar to the com-
mand \special{...} from .dvi file.

(HEX hex-text-string) or (SPECIALHEX hex-text-string) — the sequence of
bytes identified by hexadecimal codes is treated as the argument of the
command \special{...} from .dvi file. The hex-text-string cannot con-
tain spaces, it should contain only hexadecimal digits ‘0’–‘9’ and ‘A’–‘F’
or ‘a’–‘f’ and it should contain the even number of such digits.

Similar to dimensional data specified for the commands CHARACTER, LIGTABLE,
HEADER, the dimensional parameters of the commands RULE, RIGHT, LEFT, UP,
DOWN are specified using the values TBFUNITS and TBFSIZE from the .tbf file
(see section 2.7.2).

2.3.2 CHARACTER/VARCHAR

The parameter VARCHAR of the command CHARACTER specifies the extensible
character (usually the mathematical delimiter). Its parameters define the char-
acter codes which are used as the top of the delimiter, middle of the delimiter,
bottom of the delimiter and the replicated part of the delimiter. The zero value

25

of corresponding character codes (except replicated part) means that this part
of the extensible character is absent.

The command has the format

(VARCHAR (parm1) (parm2) ...)

where the following parameters can be used:

(TOP char-code) — specifies the character which is used as the top element
of the extensible character;

(MID char-code) — specifies the character which is used as the middle ele-
ment of the extensible character;

(BOT char-code) — specifies the character which is used as the bottom ele-
ment of the extensible character;

(REP char-code) — specifies the character which is used as the replicated
part of the extensible character.

2.4 LIGTABLE

The command LIGTABLE specifies the additional ligature and kerning data for
the virtual font characters — mainly the ligature and kerning data for the pairs
of characters selected from different real fonts. Notot too much LIGTABLE com-
mands are necessary in the .tbf file since the ligature data for the pairs of
characters selected from the same real font are usually copied from correspond-
ing .pl files.

The command LIGTABLE has the format:

(LIGTABLE
(ligature-command1)
(ligature-command2)
......

)

It several LIGTABLE commands are specified, they are joined together after read-
ing the .tbf file.

The ligature-commands are similar to that specified at .pl files except the
fact that the dimensional parameter of the command KRN is specified using the
values TBFUNITS and TBFSIZE (see section 2.7.2). The following commands are
valid here:

(LABEL char-code) — start the list of ligature commands for the character
char-code of the virtual font;

(LABEL BOUNDARYCHAR) or (LABEL BCHAR) — start the list of ligature com-
mands for the special character “end-of-word”;

26

(SKIP integer) — jump over specified LIGTABLE commands LIG and KRN;

(STOP) — stop the LIGTABLE commands started by the command (LABEL
char-code);

(KRN char-code′ shift) — the kerning data shift (real value) specified for the
pair of characters char-code and char-code′ (the value char-code is specified
at the command LABEL which starts the sequence of ligature and kerning
commands for this character);

(LIG char-code′ char-code′′) — the ligature data for the pair of characters
char-code and char-code′ (the value char-code is specified at the command
LABEL which starts the sequence of ligature and kerning commands for
this character) — these two characters are substituted by the character
char-code′′. The identifiers

/LIG, /LIG>, LIG/, LIG/>, /LIG/, /LIG/>, /LIG/>>

can be used instead of LIG which defines various ways of the substitution
of the character char-code′′ instead of the pair of characters char-code and
char-code′ (see [1] for more details).

Example:

(LIGTABLE
(LABEL C <)

(LIG C < V CYR open quote)
(STOP)

(LABEL C >)
(LIG C > V CYR close quote)
(STOP)

(LABEL V CYR GHE)
(KRN C . V kk#)
(KRN C , V kk#)
(KRN C : V kk#)
(KRN C ; V kk#)
(STOP)

)

2.5 OUTPUT

The command OUTPUT defines the name of the output .vpl file and, may be,
the way how the character codes for the .vpl commands are to be printed. It
has the form

(OUTPUT filename (option1) (option2) ...)

27

where filename is the name of the output virtual font, and the optional options
can be the following:

(ALLCHAR) — print all printable characters in a form C letter;

(ALPHA) — print in a form C letter only the letters of the latin alphabet;

(ALPHANUM) — print in a form C letter the digits and the letters of the latin
alphabet;

(ALLCODE) — print all characters as the character codes;

(DEC) or (DECIMAL) — print character codes as decimal integers;

(OCT) or (OCTAL) — print character codes as octal integers;

(HEX) or (HEXADECIMAL) — print character codes as hexadecimal integers.

Example (default value):

(OUTPUT noname.tbf (ALPHANUM) (OCTAL))

2.6 HEADER

The virtual font has the header with the header parameters:

• DESIGNSIZE

• DESIGNUNITS

• CODINGSCHEME

• FAMILY

• FACE

• FONTDIMEN and its sub-parameters (SLANT, SPACE, QUAD, ..)

The header parameters can be get from:

• the header of one of the real fonts used in virtual font;

• the header of some separate .pl file;

• VFComb the explicit commands from the .tbf file.

The following parameters of the command HEADER are valid:

28

(FONT integer) — defines index of the font which is used as a source for the
header parameters. The real name of the font is taken from the MAPFONT
command with the corresponding index value. Default value for this pa-
rameter is (FONT D 0) which means that if nor FONT nor FILE dat are
specified by the User, the font MAPFONT D 0 is used as a source for the
header parameters. If FONT argument is <0 or if the parameter FILE is
specified, the MAPFONT fonts are not used as a source for the header.

(FILE filename) — defines the name of the .pl file which is used as a source
for the header parameters. Only one of the parameters — FONT or FILE —
can be specified among the parameters of the command HEADER. If both
parameters are specified, the last one is used and the warning message is
generated.

(CHECKSUM 32-bit integer) — specifies the CHECKSUM of the .tfm file which
will be generated after the processing of .vpl file by the utility VPtpVF.
Usually this parameter is not necessary — if it is not specified, the correct
CHECKSUM value is substituted by VPtoVF automatically, and it is a rare
chance that the User can guess the proper value (see comments below).

(DESIGNSIZE real-value) — specifies the value of the DESIGNSIZE which is
used as a unit of measure for nearly all dimensional .vpl data (see com-
ments below).

(DESIGNUNITS real-value) — specifies the value of the DESIGNUNITS which
is used as a unit of measure for nearly all dimensional .vpl data (see
comments below).

(CODINGSCHEME text-string) — specifies the text which identifies uniquely
the arrangement of the characters in the coding table of this font. For
example, for Computer Modern Roman except cmr5 it is equal to

(CODINGSCHEME TeX text)

while for cmr5 it is equal to

(CODINGSCHEME TeX text without f-ligatures)

(the f-ligatures are absent in this font since the characters are too small).
This parameter cannot contain internal braces ‘(’ and ‘)’ and but can be
the string expression (see section 2.1.2 for more details).

(FAMILY text-string) — specifies the FAMILY identifying string. This pa-
rameter cannot contain internal braces ‘(’ and ‘)’ but can be the string
expression (see section 2.1.2 for more details).

(FACE 8-bit-integer) — specifies the Xerox face code for the virtual font.

29

(SEVENBITSAFEFLAG) — this command is of no use and its is skipped af-
ter printing the warning message. The attribute SEVENBITSAFEFLAG was
used in earlier versions of TEX to specify that the font contains only the
characters in a range 0–127, and now this flag is obsolete. Although the
corresponding field is conserved in .tfm file, the utility VPtoVF inserts
the proper value automatically (after the check that the virtual font con-
tains no characters outside the range 0–127) irregardless of the command
SEVENBITSAFEFLAG encountered in .vpl file.

(FONTDIMEN parm-list) — defines the following header parameters:

(SLANT real-value)
(SPACE real-value)
(STRETCH real-value)
(SHRINK real-value)
(XHEIGHT real-value)
(QUAD real-value)
(EXTRASPACE real-value)
(NUM1 real-value) or (DEFAULTRULETHICKNESS real-value)
(NUM2 real-value) or (BIGOPSPACING1 real-value)
(NUM3 real-value) or (BIGOPSPACING2 real-value)
(DENOM1 real-value) or (BIGOPSPACING3 real-value)
(DENOM2 real-value) or (BIGOPSPACING4 real-value)
(SUP1 real-value) or (BIGOPSPACING5 real-value)
(SUP2 real-value)
(SUP3 real-value)
(SUB1 real-value)
(SUB2 real-value)
(SUPDROP real-value)
(SUBDROP real-value)
(DELIM1 real-value)
(DELIM2 real-value)
(AXISHEIGHT real-value)
(AXISHEIGHT real-value)

(the parameters specified in a form (PARAMETER index value) are skipped
and the warning message is printed).

All these parameters are dimensional parameter except the parameter
SLANT and they are defined using TBFUNITS and TBFSIZE data from the
.tbf file (see section 2.7.2). They are re-calculated properly so that
they fit to the header parameters DESIGNUNITS and DESIGNSIZE when
the header data of the output .vpl file are known.

The parameters are specified as the sub-lists of the list defined by the identifier
HEADER. Example:

30

(HEADER
(FONT D 1)
(FAMILY LHTT)
(CODINGSCHEME LH Cyrillic TeX text)
......

)

VFComb generates the header parameters in a following way. The com-
mands from the .tbf file are read, and the dimensional parameters from the
command HEADER are treated using the units defined by TBFSIZE and TBFUNITS
(see section 2.7.2) — as well as the other dimensional parameters like that from
the commands LIGTABLE and CHARACTER. After it the .pl file specified by the
HEADER commands FONT or FILE is read, and the parameters which were not
defined explicitly at the command HEADER are added from it. Finally, all the
dimensional parameters which vere read from the .tbf file (namely, specified
at the commands LIGTABLE, CHARACTER, HEADER/FONTDIMEN) are converted to
DESIGNSIZE and DESIGNUNITS values from the resulting header of the .vpl file.

The .pl file header parameters

DESIGNSIZE
DESIGNUNITS
CODINGSCHEME
FAMILY
FACE
FONTDIMEN sub-parameters except PARAMETER

are processed by VFComb. The .pl file header parameters

SEVENBITSAFEFLAG
HEADER
sub-parameter PARAMETER of the parameter FONTDIMEN

are ignored after printing the warning messages. All other legal .pl commands
are skipped without processing when VFComb reads the header parameters.

The header parameters which are read from .pl file are added to .vpl
header data if corresponding parameters are not specified explicitly in .tbf file.
Usually all header parameters (including DESIGNUNITS and DESIGNSIZE) are
copied from some .pl file, and only the parameters FAMILY, FACE, CODINGSCHEME
are substituted by their explicit specifications from .tbf file.

The exception is the header parameter CHECKSUM which is ignored when it is
read from .pl file and which value can be set by the User only if it is specified
explicitly in .tbf file. Usually this parameter is not necessary — if it is not
specified by the User, it is not inserted into the output .vpl file, and as a result
the correct CHECKSUM value is calculated by VPtoVF automatically. It is a rare

31

chance that the User can guess the proper value, and if the CHECKSUM from the
.vf file and the checksum calculated for the .tfm file of the virtual font do not
coincide, the DVI-driver prints the warning message — this message shows that
the versions of .vf and .tfm files may be different or that the .tfm file may
be damaged. The exception from this rule (and the only case when the explicit
parameter CHECKSUM can be useful) is the zero value specified for the parameter
CHECKSUM of the virtual font. In this case the comparison of CHECKSUM from .vf
file with the the checksum of the .tfm file of the virtual font is not performed
at all when this font is loaded by the DVI-driver.

2.7 Additional commands

The following VFComb commands are considered in this section:

• VTITLE — the title of the virtual font;

• TBFUNITS and TBFSIZE — the scale factors for the lengths specified in
.tbf file;

• BOUNDARYCHAR — character code which is used in the .vpl ligature table
to specify the “end-of-word” character;

• SETTFMFONT — default value for the attribute TFMFONT if for some com-
mands CHARACTER only the attribute TFMCHAR is specified;

• SETMAPFONT — default value for the attribute FONT if for some commands
CHARACTER only the attribute CHAR is specified;

• DISCARDCHAR — the list of characters which are not included in the virtual
font;

• NOTAUTOADDCHAR — the list of characters which cannot be used for auto-
matically characters;

• OPTION — modes of VFComb;

• SAVETABLE — printing of the mapping table into ASCII file;

2.7.1 VTITLE

The command VTITLE of the .vpl file defines the title of the file which is actu-
ally the comment inserted in the binary .vf file after processing by the utility
VPtoVF. The command VTITLE has the form

(VTITLE text-string)

32

where the text string is the combination of string elements and string expressions
(see section 2.1.2) separated by spaces, and can include opening and closing
braces ‘(’ and ‘)’ if they are balanced correctly. The result of the expansion of
string expressions cannot exceed 255 characters.

Example:

(VTITLE Created by VFComb (Version 1.3))

2.7.2 TBFUNITS and TBFSIZE

All the length data in .vpl file are defined in units specified by the parameters
DESIGNUNITS and DESIGNSIZE from the HEADER command (see section 2.6).
Nethertheless, when the User prepares the .tbf file, these parameters are not
known yet since they can be read later from the HEADER file. For this reason all
the length and size data in .tbf file are specified using internal scaling factors
specified bu the commands TBFUNITS and TBFSIZE with the default values

(TBFSIZE R 1.0) (TBFUNITS R 1.0)

which are the analogs of the commands DESIGNUNITS and DESIGNSIZE from .pl
and .vpl files. The length and size data specified into .tbf file are recalculated
to the proper values DESIGNUNITS and DESIGNSIZE from the command HEADER
when the output .vpl file is generated.

2.7.3 BOUNDARYCHAR or BCHAR

The LIGTABLE entries can contain ligature and kerning data with a special
character “end-of-word” which defines the beginning of the word when encoun-
tered in the command LABEL, and the end of the word when encountered in the
commands LIG and KRN. The command BOUNDARYCHAR defines the code assigned
to this special character (usually this is the code D 255). As a result:

• inside .tbf file the LIGTABLE entries which contain this code are recognized
as the entries with “end-of-word” character;

• inside .pl files the LIGTABLE entries with their own BOUNDARYCHAR codes
are mapped to the code specified in .tbf file.

Example:

(BOUNDARYCHAR D 255)
(BCHAR D 255)

2.7.4 SETMAPFONT and SETTFMFONT

The command SETMAPFOMT specifies the default value for the attribute FONT if
only the attribute CHAR is defined (see description of the VFComb command
CHARACTER in section 2.3). It has the form

33

(SETMAPFONT ineger)

where integer is the index of the font listed in MAPFONT command which is used
for FONT attribute.

Similarly, if the command SETTFMFOMT specifies the default value for the
attribute TFMFONT if only the attribute TFMCHAR is defined (see description of
the VFComb command CHARACTER in section 2.3). It has the form

(SETTFMFONT ineger)

where integer is the index of the font listed in MAPFONT command which is used
for TFMFONT attribute.

The important difference of VFComb CHARACTER command is that if the
parameter FONT is not specified although the parameter CHAR is specified, the
value specified by the command SETMAPFONT is used (see section 2.7.4). The
syntaxis of .vpl files assumes that the parameter FONT specified for the previous
command CHARACTER is used while for VFComb commands it is not so.

Similarly, if the parameter TFMFONT is not specified although the parameter
TFMCHAR is specified, the value specified by the command SETTFMFONT is used
(see section 2.7.4).

Example (default values):

(SETMAPFONT D 0)
(SETTFMFONT D 0)

2.7.5 DISCARDCHAR and NOTAUTOADDCHAR

The command DISCARDCHAR defines the characters from the real fonts which are
not included in the virtual font. This command is useful if the mapping to some
font is defined by one of the options FULL, 7TO8, 8TO7, 8BIT, 7BIT, JWNCYR,
CYRTUG (see command MAPFONT in section 2.2) but there are some characters
which are to be excluded from the mapping list.

The command has the form:

(DISCARDCHAR
(FONT font1) (CHAR char1)
(FONT font2) (CHAR char2)
......

)

Actually one command (FONT ...) can be followed by several commands (CHAR
...) if these characters belong to the same real font. Instead of several com-
mands (CHAR charcode) it is possible to use one command (RANGE charcode1

charcode2) — in this case all the characters from the range charcode1–charcode2

get the attribute DISCARD.
Example:

34

(DISCARDCHAR
(FONT D 0) (CHAR D 250) (CHAR D 251) ...
(FONT D 1) (RANGE D 128 D 255) ...
......

)

The command NOAUTOADDCHAR defines the characters from the virtual font
which cannot be used for character mapping when VFComb adds automati-
cally characters since they are connected with other characters by the attribute
NEXTLARGER or through LIGTABLE data (see sections 2.2 and 2.7.6 for more de-
tails) — these characters get the attribute DISCARD if this character is not used
explicitly in mapping table.

The command has the form:

(NOAUTOADDCHAR (CHAR char1) (CHAR char2) (CHAR char3) ...)

Similarly to DISCARDCHAR, instead of several commands (CHAR charcode) it is
possible to use one command (RANGE charcode1 charcode2) — in this case all
the characters of the virtual font from the range charcode1–charcode2 get the
attribute DISCARD if these characters are not used explicitly in mapping table.

2.7.6 OPTION

The command OPTION defines some modes of VFComb operations. It consists of
identifiers where only TRACE and INCLUDECHAR can have a non-empty argument:

(TRACE integer) — specifies the level of tracing messages printed during the
processing of the ligature tables (integer should be in a range 0–3);

(TRACE) — just the same as (TRACE D 2);

(NOTRACE) — just the same as (TRACE D 0);

(SCREEN) — print the VFComb messages on the display screen;

(NOSCREEN) — print the VFComb messages only into .log file;

(PHANTOM) — assign attribute PHANTOM to all characters, for which the at-
tributes PHANTOM or NOPHANTOM are not specified explicitly;

(INCLUDECHAR (ident1)(ident2) ...) — specifies how VFComb should au-
tomatically add characters to the virtual font. The following ident values
can be used:

ALLCHAR — include automatically all the characters from the real fonts
even it is not specified explicitly in CHARACTER or MAPFONT commands;

LIGTABLE — include in the virtual font the characters which are listed
in the ligature tables specified for already included characters;

35

KRNDATA — include in the virtual font the characters which are listed
in a kerning data of the ligature tables specified for already included
characters;

LIGDATA — include in the virtual font the characters which are listed
in a ligature data of the ligature tables specified for already included
characters;

NOLIGTABLE — do not include in the virtual font automatically the
characters from the ligature table;

NEXTCHAR — include automatically new characters which are are con-
nected by the attribute NEXTLARGER with the already included char-
acters;

NONEXTCHAR — do not include new characters from the real fonts which
are connected by the attribute NEXTLARGER with the already included
characters.

(LIGTABLE) — include in the virtual font the ligature tables of the real fonts;

(NOLIGTABLE) — do not include in the virtual font the ligature tables of the
real fonts;

(NEWDISCARD) — the underfined characters of the real font are marked au-
tomatically by the attribute DISCRAD in the global mapping table (see
commands CHARACTER (section 2.3) and DISCARDCHAR (section 2.7.5));

(NONEWDISCARD) — the underfined characters of the real font are not marked
automatically by the attribute DISCRAD in the global mapping table (see
commands CHARACTER (section 2.3) and DISCARDCHAR (section 2.7.5));

(AUTOTFMWIDTH) — add automatically for the characters with the attributes
SIZECHAR and SIZEFONT the attribute AUTOTFMWIDTH if it is not specified
explicitly (see command CHARACTER);

(NOAUTOTFMWIDTH) — add automatically for the characters with the at-
tributes SIZECHAR and SIZEFONT the attribute NOAUTOTFMWIDTH if it is
not specified explicitly (see command CHARACTER);

(AUTOTFMCHAR font-index) — for the characters without explicitly specified
attributes TFMFONT, TFMCHAR or NOTFMDATA (see command CHARACTER (sec-
tion 2.3 for more details) the attributes

(TFMFONT D font-index) (TFMCHAR D char-code)

are added automatically;

(AUTOTFMMAPCHAR font-index) — for the characters without explicitly speci-
fied attributes TFMFONT, TFMCHAR or NOTFMDATA (see command CHARACTER
(section 2.3 for more details) the attributes

36

(TFMFONT D font-index) (TFMCHAR D mapchar-code)

are added automatically.

Example (default values):

(OPTION
(TRACE D 0)
(SCREEN)
(INCLUDECHAR (NOLIGTABLE))
(INCLUDECHAR (NEXTCHAR))
(LIGTABLE)
(NONEWDISCARD)
(AUTOTFMWIDTH)

)

2.7.7 SAVETABLE

The command SAVETABLE is used when it is desirable to have VFComb com-
mands which are equivalent to the mapping table equivalent to that used to
generate .vpl file. It can have the following forms:

(SAVETABLE filename)
(SAVETABLE filename (SHORT))
(SAVETABLE filename (FULL))

where the options FULL and SAVE defines the format of the output.

3 VFComb applications

3.1 Virtual fonts for TEX formats with national alphabets

Although everything which can be done by VFComb could be realized also by
explicit usage of .pl and .vpl file syntaxis (as well as everything which can be
done manually by .pl and .vpl files can be done with VFComb), some typical
operations with the virtual fonts are performed with its help easier than by
manual editing of .pl and .vpl files. The typical problem of this type is the
adaptation of standard TEX formats to national alphabets — this problem is
especially important for cyrillic alphabets since most cyrillic letters cannot be
created as the combination of the latin (english) letters with some accents.

The standard solution of this problem is to combine the english part taken
from Computer Modern family with the national fonts which extend the Com-
puter Modern family and which contain in the upper part of ASCII table (codes
128–255) the national symbols. The best way how to do it is to create the virtual
font whose lower part refers to original CM fonts, and upper part refers to the
national fonts — it is just the way which was recommended by D.Knuth in [1].

37

The advantage of this approach is that it is possible to keep the changes in CM
fonts and in national fonts separately, and in addition it is possible to economize
disk space since it is not necessary to keep two copies of each Computer Modern
character — one as the original CM font which is necessary for original TEX
formats, and the second one as the lower part in the combined national font.

The combination of the lower part of one font and the upper part of another
font, or even the joining all the characters from one font and all the characters
from another font (provided that no character code is encountered twice) can be
done by VFComb using few commands. If some characters are to be discarded
from the font or moved to the different positions of the ASCII table, it does not
makes the command script more complicated. The output virtual font contains
proper metric information for each character borrowed from the source metric
information and the correct mapping of the characters into individual real fonts.

The similar operation can be performed also by the program TFMerge (IHEP
TEXware, Protvino), but VFComb enables to perform additional operation.
That is, except joining metric and ligature/kerning information from each font
into one virtual font, it is necessary to add cross-ligature and cross-kerning
information for the pairs of characters taken from different fonts. VFComb
enables to add metric, ligature and kerning data taken from its script file (which
makes the original script a little bit more complicated). The important feature
is that this additional data can contain variables and logical structures, which
enables to generate the whole CM family of the virtual typefaces with national
characters using just the same pseudo-program written on VFComb command
language.

Except the operations described above, VFComb is capable to perform the
following operations if it is specified by the User in its script:

• discard the ligature tables of some real fonts;

• include in the virtual font the full ligature table of the real font;

• include in the virtual font only those characters which are declared explic-
itly in user defined data, and discard the elements of the ligature tables
which correspond to non-included characters of the real font;

• automatically add to the virtual fonts the characters which are not in-
cluded explicitly by the User but which are joined with the already in-
cluded characters through ligature table data, or by specifications inside
the command CHARACTER the attributes NEXTLARGER and/or VARCHAR.

These features enable to create the desired virtual fonts for national alphabets
with less efforts and with more realibility than by manual manipulations with
.pl and .vpl files.

38

3.2 Virtual fonts for colored printing

The other problem is the application of the virtual fonts to multi-colored print-
ing. Suppose that it is necessary to print the text where different characters
have different colors. From TEX-compiler’s point of view it means that the char-
acters with different colors are assigned to different fonts, and it is a task for
DVI driver to decide how to print these fonts in desired colors.

The colored printing is collected from the overlapped sheets where each
sheet of text or graphics is printed by individual monocolor pass. To make
the templates for monocolor printing it is necessary to organize the output of
the DVI file so that in one pass only yellow characters are printed, in another
pass only blue characters are printed, etc., while the characters which have the
green color are to be printed twice — in blue as well as in yellow. The easiest
way to teach DVI-driver how to do it is to create different subdirectories with
virtual fonts — one subdirectory for each elementary color. The virtual font files
placed in the subdirectory for yellow printing which correspond to the yellow
fonts will refer to the actual *.pk-files if and only if the yellow color is assigned
to this character — otherwise it will refer to emty character. The subdirectories
for other colors are organized analogously. As soon as the yellow printing is
performed, the DVI-driver is configured so that it takes the virtual fonts from
the “yellow” subdirectory, and for the output in other colors the corresponding
reconfiguration of the DVI-driver is performed.

If the mapping of the empty characters into the dummy font is performed, it
results to a wrong behaviour of the DVI-driver: the characters in dummy font
have zero size, and it means that the next character after the empty character
is shifted to the left (as compared with the desired behaviour) on the distance
equal to the width of the skipped character. To prefent this effect it is necessary
to insert in the virtual font the explicit DVI-commands which move the current
output position to the right by the distance which is the width of the skipped
character. This operation is performed by VFComb by a single command: the
User can

• assign the attribute PHANTOM to each phantom character;

• assign the attribute �PHANTOM to the font which is used to mark colored
letters;

• specify the global option PHANTOM;

and as a result for the necessary characters the empty mapping will be performed
instead of mapping into the real font characters.

3.3 Substitution of .pk fonts instead of Postscript fonts

The next problem where the usage of the virtual fonts is advantageous is the
visualization of the document which was compiled using PostScript fonts. Gen-

39

erally the scren viewer cannot process the Postscript characters, and it is nec-
essary to remap the PostScript font characters into some pk-font which can
be displayed by the viewer — say, some typefaces from the Computer Modern
family.

Such remapping can be performed using virtual font mechanism, but if it is
done without special precautions the screen view can be far from the printed
output. The reason is that CM characters have the width different from the
PostScript font (the fact that they have different graphical image is not so
essential). Like the previous case the screen output will be shifted to the left
on the distance which is the difference between the width of the PostScript
character and the CM character if no special precautions are taken. To make
the correct output, it is necessary to add to the virtual font the explicit DVI-
commands which correct the current output position.

To make corresponding virtual font automatically, VFComb enables to spec-
ify for the real fonts two PL-files with the metric information: the first one for
the nominal characters which is used by TEX to compile the DVI-file (in our case
it is the PostScript afm-file converted to tfm format), and the second one for the
real characters which are used when the DVI-file is displayed (or printed). If
such information is specified by the User, the commands which correct properly
the current output position are inserted in the virtual font.

This operation works if both fonts have the same coding scheme — namely,
the characters used by TEX and the characters used by DVI-viewer have the
same code value. If it is not so, the operation of re-mapping inside already
mapped font ir required which could be very complicated and result to a very
complicated scheme of virtual vont generation. To solve this difficulty it is
assumed that the correct metric information for the “true” font (i.e., for the font
used in compilation of the DVI-file) is already available. The special operators
in VFComb enable to load this information and to correct the proper character
width.

Acknowledgements

Acknowledgement I

All new improvements of VFComb (except English manual) are the results of the
contacts and discussions which were held during the EuroTEX-95 meeting. So I
would like to thank Dr. Kees van der Laan for his giant efforts to organise the
visit to the EuroTEX-95 the delegation from Russia and for his patient attention
to russian colleagues before, during and after the EuroTEX-95.

It is not so easy to recall all participants of this conference whose opinion
makes an impact in preparing the new version of VFComb. Among other per-
sons I would like to thank Dr. Ph.Taylor and Dr. S.Znamensky for their valuable
suggestions which enable to improve the program. I would like also to thank

40

O.A.Lapko, S.A.Strelkov and I.A.Mahovaya for their efforts spent on the Cyrillic
TEX project which actually inspired our work.

Acknowledgement II

I would like to express my warmest thanks to Dr. A.Compagner (Delft Univer-
sity of Technology), who did not contributed something to this work but spent
a lot of his time and efforts explaining the Phylosophy of Randomness and his
approach to RNG.

Acknowledgement III

??????

Acknowledgement IV

This research was partially supported by a grant from the Dutch Organization
for Scientific Research (NWO grant No 07-30-007).

References

[1] D.Knuth, Virtual Fonts: More Fun for Grand Wizards, TUGBoat 11
(1990), No. 1, pp.13–23.

[2] A.Khodulev, I.Mahovaya. On TEX experience in MIR Publishers. Proceed-
ings of the 7th EuroTEX Conference, Prague, 1992.

[3] O.Lapko. MAKEFONT as a part of CurTUG–EmTEX package. Proceed-
ings of the 8th EuroTEX Conference, Gdańsk, 1994.

[4] A.S.Berdnikov, S.B.Turtia. VFComb — a program for design of virtual
fonts. Proceedings of the 9th EuroTEX Conference, Arnhem, 1995.

41

