
TrY

Ajabu Tex
ajabutex@gmail.com

January 2nd, 2014

Contents

I Preliminaries 2

1 Introduction 2

2 Scope of use 2

3 How to use 2
3.1 Installation . 2
3.2 Mechanics . 3
3.3 The command line . 5

II The code 6

III What’s new in version 4 17

IV Credits and licence 18

V Indexes 19

4 Chunks 19

5 Identifiers 19

1

January 3, 2014 2

Part I

Preliminaries

1 Introduction

This document describes the algorithms needed to implement a system for the
automation of the compilation of (La)TEX documents.

The characteristics of the implementation allow to use the program for the
automation of other procedures, such as the compilation of files of Literate
Programming, and in all cases in which a sequence of bash commands is needed
to process a text file.

The language used is Python, chosen for its expressive power, stability, large
endowment of standard libraries and the fact to be natively installed on most
Linux systems.

2 Scope of use

There are already some great programs aimed to automate the compilation of
TEX and LATEX documents: latexmk by John Collins (http://www.phys.psu.e-
du/˜collins/software/latexmk-jcc/), Rubber by Emmanuel Beffara (http://la-
unchpad.net/rubber), arara by Paulo Cereda (http://cereda.github.io/arara/)
and many others; you can find some of them on CTAN (http://www.ctan.org/to-
pic/compilation).

arara is the program from which I took inspiration for the creation of TrY. I
really like the idea behind the implementation of arara, namely that of making
explicit in the document the list of commands needed to compile it.

arara is a nice piece of software but has some limitations that make it useless
for my work, subtle limits relating to the handling of the Linux filters, pipes
and subshells.

On the other hand TrY works only on Linux (and perhaps Mac OS), but on
Linux practically has no limitation. TrY can do anything that can be done in a
Linux terminal. In practice the TrY commands are nothing but bash commands
inserted in the comment lines of a TEX document.

Last but not least, TrY could not be simpler than it is.

3 How to use

3.1 Installation

Be sure that the file try is executable and then copy it in the /usr/bin directory
with the following commands:

chmod +x try

sudo cp try /usr/bin/try

January 3, 2014 3

3.2 Mechanics

TrY scans the document looking for TrY statements into the comment lines and
executes them one after the other.

The typical form of the TrY commands is the following:

%$ <command> <parameter> <parameter> ...

1. The first element of the line must be the comment symbol (%);

2. immediately followed by the dollar sign ($);

3. then follows a space;

4. finally, a Linux command with its parameters.

So let’s say you are writing a LATEX document named nicedoc.tex; if you
put at the beginning of the file the following line of comment:

%

%$ lualatex --enable-write18 nicedoc.tex

%

you can simply compile the document with the following command line:

try nicedoc.tex

As an added benefit, anyone who will read your manuscript will know that
the required engine for the compilation is LuaLATEX and that is required the
activation of the write18 option.

In a TrY statement you can give instructions to process any file, but if the
file name passed to the command as a parameter is the same of the name of the
document itself, the file name can be replaced by the placeholder ‘$0’.

So, in the example above, you can use into the manuscript the following
statement:

%

%$ lualatex --enable-write18 $0

%

that is a little bit more compact.
Another example: you are writing bigdoc.tex, a complex LATEX document,

with management of many different fonts, extensive indexes and some parts
computed on-the-fly by python. The typical cicle of compilation consists of
several bash commands. But you can type those commands at the beginning of
the file once and forever as TrY statements:

January 3, 2014 4

%

%$ xelatex -shell-escape $0

%$ bibtex -min-crossref=3 bigdoc.aux

%$ xelatex -shell-escape $0

%$ xelatex -shell-escape $0

%

and let TrY do the hard work for you. The nice thing is that this way
the document show explicitly the engine needed, the number of compilations
required and so on, making easier the collaborative editing of the document.

With TrY you can also process other files than TEX or LATEX documents. In
this case you have to tell the program what is the comment symbol used, using
the statement $trycommentchar=<a comment char>$. For example:

#

Sample python listing

#

$trycommentchar=#$

#

#$ python -B $0 -W message

#

As a last example, you can put at the beginning of a noweb file of Literate
Programming the following statements. Let’s say that the name of the file is
niceprog.nw:

%

% extraction and compilation of the documentation

%$ noweave -index -latex $0 > niceprog-doc.tex

%$ pdflatex niceprog-doc.tex

%$ pdflatex niceprog-doc.tex

%$ pdflatex niceprog-doc.tex

%

% extraction and compilation of the program

%$ notangle -Rniceprog $0 > niceprog.pas

%$ fpc -Fudirectory -gh niceprog.pas

%

Now you have only to launch TrY in a terminal with the following command
line

try niceprog.nw

to obtain the documentation, the listing and the executable file in just a
single step.

January 3, 2014 5

3.3 The command line

To process a document with TrY open a terminal and use the following command
line:

$ try [file [--log] [--safe] [--verbose] | --help | --version]

$ try [file [-l] [-s] [-v] | -h | -V]

[file] is the name of the document, including the extension, that you want
to process;

[-h | --help] print a help message and exits;

[-s | --safe] print the list of commands before to execute them;

[-l | --log] produce a log file with the operations carried out by the pro-
gram;

[-v | --verbose] print the output of the program;

[-V | --version] output version information and exit.

If you use a programmable text editor, it can be set for use with TrY. For
example, to create a command that launches TrY from GEdit you can do this
way:

1. menu Tools -> Manage externals tools

2. list All Languages. Click on Add a new tool. Name it Compile TrY

3. In the Edit pane write:

#!/bin/bash

try $GEDIT CURRENT DOCUMENT NAME --log --verbose

4. Shortcut Key -> Shift+Ctrl+% (or whatever you want)

5. Save -> Current document

6. Input -> Nothing

7. Output -> Display in bottom pane

8. Applicability -> All documents -> All Languages

Now you can start building with TrY the document you are working on with
GEdit simply by pressing the key combination Shift+Ctrl+%.

January 3, 2014 6

Part II

The code
Here is an outline of the program:

6a 〈try 6a〉≡
〈shabang 15c〉
〈license statements 16〉
〈standard libraries 6b〉
〈global constants 8a〉
〈procedure to notify messages on the screen and in the logfile 9a〉
〈procedure to get the list of command-line arguments 11a〉
〈procedures to collect the TrY statements 11b〉
〈procedure for the request for a confirmation 14b〉
〈procedure for the execution of the TrY statements 15b〉
〈main module 7〉
The main module collects the arguments in the variable args from the com-

mand line; if a filename is passed it scans the document to find lines of comment
containing TrY statements that are then stored in the variable try statements.
At last executes the TrY statements itself, but only if has a confirmation from
the user. Every step of this process is notified on the screen and in the logfile if
the proper parameters are passed to the program via the command line.

6b 〈standard libraries 6b〉≡ (6a) 8b .

import sys

January 3, 2014 7

7 〈main module 7〉≡ (6a)

if __name__ == "__main__":

args = get_args()

if not args.filename ==’’:

notify(’This is ’ + prog_name + ’ ver. ’ + prog_version + \

’ revision ’ + prog_revisiondate + ’\n’, args)

try_statements = get_trystatements_from(args)

if len(try_statements) == 0:

notify(’No commands found in ’ + args.filename + ’.’, args)

sys.exit(’Nothing to execute.’)

else:

if args.safe:

if execution_confirmed_of(try_statements):

execute_statements(try_statements, args)

else:

notify(’Execution stopped by the user.’, args)

sys.exit(’Execution aborted.’)

else:

execute_statements(try_statements, args)

Uses execute statements 15b, execution confirmed of 14b, get args 11a,
get trystatements from 14a, notify 9b, prog name 8a, prog revisiondate 8a,
and prog version 8a.

January 3, 2014 8

Now we have to build every single command called by the main module.
First of all we have to define some global constants, namely the strings used in
the output of the program.

8a 〈global constants 8a〉≡ (6a)

prog_name = ’TrY’

prog_cmd = ’try’

prog_version = ’4.0’

prog_author = ’Ajabu Tex’

prog_revisiondate = ’Jan 2, 2014’

prog_releasedate = ’2014’

prog_license = prog_name + ’ ’ + prog_version + ’\n’ + \

’Copyright 2013-’ + prog_releasedate + ’ ’ + prog_author + ’\n’ + \

’There is NO warranty. Redistribution of this software is\n’ + \

’covered by the terms of both the ’ + prog_name + ’ copyright and\n’ + \

’the GNU General Public License.\n’ + \

’For more information about these matters, see the file\n’ + \

’named COPYING and the ’ + prog_name + ’ source.\n’ + \

’Author of ’ + prog_name + ’: ’ + prog_author + ’.’

Defines:
prog author, used in chunk 11a.
prog cmd, used in chunk 11a.
prog license, used in chunk 11a.
prog name, used in chunks 7, 9a, 11a, 14a, and 15b.
prog releasedate, used in chunk 11a.
prog revisiondate, used in chunks 7 and 9a.
prog version, used in chunks 7 and 9a.

The function append to logfile() takes as input a file name and a string.
If the string is that opening the file then the file is overwritten; otherwise is
opened in ‘append’ mode. Then the function calculates the day and time, join
them to the string passed as argument and writhe this new string into the log
file. The name of the log file is the same name of the file to process –included
the extension– plus the extension .trylog. Example: if I call the program with
the following command line

try -l niceprog.nw

the name of the log file will be niceprog.nw.trylog.

8b 〈standard libraries 6b〉+≡ (6a) / 6b 10 .

from datetime import datetime

January 3, 2014 9

9a 〈procedure to notify messages on the screen and in the logfile 9a〉≡ (6a) 9b .

def append_to_logfile(a_file_name, a_string_line):

if a_string_line.startswith(’This is ’ + prog_name + \

’ ver. ’ + prog_version + ’ revision ’ + prog_revisiondate):

openmode = ’w’

else:

openmode = ’a’

now = datetime.now()

time_string = now.strftime("%d %b %Y %H:%M:%S.%f")

log_string = time_string + ’ ’ + a_string_line

logfile_name = a_file_name + ’.trylog’

logfile = open(logfile_name, openmode)

logfile.write(log_string + ’\n’)

logfile.close

Defines:
append to logfile, used in chunk 9b.

Uses prog name 8a, prog revisiondate 8a, and prog version 8a.

Every time the program has to send something to the screen or to the logfile,
it calls the function notify() passing to it the text to show and the arguments
passed to the program by the command line.

9b 〈procedure to notify messages on the screen and in the logfile 9a〉+≡ (6a) / 9a

def notify(text, args):

if args.log:

append_to_logfile(args.filename, text)

if args.verbose:

print (text)

Defines:
notify, used in chunks 7 and 13–15.

Uses append to logfile 9a.

January 3, 2014 10

The first operation the program has to do is to collect the parameters from
the command line. This issue is exploited with the standard library argparse.
The program can be called with the following parameters:

log send an output in a log file;

safe safe mode: before to execute the list of statements found in
the processed file prints them out on the screen and asks the
user for a confirmation;

verbose outputs on the screen the stages of processing;

version print on the screen the version number and copyright in-
formation;

file the name of the file to process;

where file is a positional parameter and the others are optional parameters.
So we have the following collection of parameters, returned by the function
get args as a list. The function get args collect the command line parameters
and manage all the stage pertaining to the command line itself. If there are no
parameters prints a help screen; if the program is called with the --version

parameter prints a screen with the version informations.
To get useful documentation from the python help system type in a terminal:

$ pydoc argparse

$ pydoc argparse.ArgumentParser

10 〈standard libraries 6b〉+≡ (6a) / 8b 15a .

import argparse

January 3, 2014 11

11a 〈procedure to get the list of command-line arguments 11a〉≡ (6a)

def get_args():

parser = argparse.ArgumentParser(

prog=prog_cmd,

usage=’%(prog)s [options] filename’,

formatter_class=argparse.RawDescriptionHelpFormatter,

description=’’’\

’’’ + prog_name + ’’’

TeX automation tool’’’,

epilog=’(C) 2013-’ + prog_releasedate + ’ ’ + prog_author)

parser.add_argument(’-l’, ’--log’,

action=’store_true’,

help=’generate a log output’)

parser.add_argument(’-s’ ,’--safe’,

action=’store_true’,

help=’print the list of commands prior to execute them’)

parser.add_argument(’-v’, ’--verbose’,

action=’store_true’,

help=’print the command output’)

parser.add_argument(’-V’, ’--version’,

action=’version’,

version=prog_license)

parser.add_argument(’filename’, nargs=’?’, default=’’)

args = parser.parse_args()

if args.filename == ’’:

parser.print_help()

return args

Defines:
get args, used in chunk 7.

Uses prog author 8a, prog cmd 8a, prog license 8a, prog name 8a, and prog releasedate 8a.

Now the variable args contain a list whith the name of the file to process
and the parameters to apply.

The extraction and the collection of the TrY statements from a file goes
through three stages: first we have to know what is the comment string.rpartition()
flag used in the file, then we have to extract from the file all the lines that are
TrY statements, at last we must to return that statements as a list of string
ready to be passed to the procedure of execution.

11b 〈procedures to collect the TrY statements 11b〉≡ (6a)

〈procedure for the recognition of the char used as comment flag 12〉
〈procedure to extract TrY statements from a list of strings 13〉
〈procedure to return the collected statements 14a〉

January 3, 2014 12

get commentchar from() takes as input a list of lines of text and returns the
default comment character (‘%’) or the one defined by the statement $trycommentchar=...$
that may be present.

The splitting of the statement is a bit tricky: the function string.rpartition(sep)

search for the separator sep in a string, starting at the end of the string, and
return a list containing the part before it, the separator itself, and the part after
it.

In our case the ipothetyc statement "% $trycommentchar=x$" is splitted in
the list ["% ", "$trycommentchar=", "x$"]. We take the last element and
split it again with the function string.rsplit([sep]), that return a list

of the words in the string,

using sep as the delimiter string, starting at the end of the string

and working to the front. In this way we obtain the list [[["x",

"$"], where the first element is the one we were looking for.
For the python documentation:

$ pydoc str.rpartition

$ pydoc str.rsplit

12 〈procedure for the recognition of the char used as comment flag 12〉≡ (11b)

def get_commentchar_from(str_list):

result = ’%’

for str_line in str_list:

if ’$trycommentchar=’ in str_line:

str_line = str_line.rpartition(’$trycommentchar=’)[2]

str_line = str_line.rsplit(’$’)[0]

result = str_line

return result

Defines:
get commentchar from, used in chunk 14a.

January 3, 2014 13

The function get trystatement list from() takes as input a list of lines
of text, the list of arguments and the comment flag. Returns a list of TrY
stateents, which is a list of bash commands that are present on the lines that
begin with the string flag, in which has been replaced any occurrence of the
string ‘$0’ with the name of the file to process.

A useful python documentation is in:

$ pydoc str.partition

13 〈procedure to extract TrY statements from a list of strings 13〉≡ (11b)

def get_trystatement_list_from(str_list, args, flag):

file_name = args.filename

result = []

for str_line in str_list:

if str_line.startswith(flag):

if ’$0’ in str_line:

str_line = str_line.replace(’$0’, file_name)

str_line = str_line.strip()

str_line = str_line.partition(flag)[2]

notify(’Found command ’ + str_line, args)

result.append(str_line)

return result

Defines:
get trystatement list from, used in chunk 14a.

Uses notify 9b.

January 3, 2014 14

get trystatements from() takes in input the list of arguments passed to
the program via the command line. Open the file and extract the whole its
content as a list of strings. Those strings are filtered through the procedure
get commentchar from() and get trystatement list from() to obtain a list
of bash commands to pass to the procedure of execution.

14a 〈procedure to return the collected statements 14a〉≡ (11b)

def get_trystatements_from(args):

file_name = args.filename

notify(’Looking for ’ + prog_name + ’ commands in ’ + file_name, args)

f = open(file_name, ’r’)

str_lines = f.readlines()

f.close()

comment_char = get_commentchar_from(str_lines)

notify(’Comment char used: ’ + comment_char, args)

try_statement_flag = comment_char + ’$ ’

result = get_trystatement_list_from(str_lines,

args, try_statement_flag)

return result

Defines:
get trystatements from, used in chunk 7.

Uses get commentchar from 12, get trystatement list from 13, notify 9b,
and prog name 8a.

execution confirmed of takes the list of statements found into the pro-
cessed file, print them out on the screen and ask the user a confirmation about
the execution. The function returns a boolean value.

14b 〈procedure for the request for a confirmation 14b〉≡ (6a)

def execution_confirmed_of(str_lst):

prompt = ’These are the commands that will be processed:\n’

for str_line in str_lst:

prompt += str_line + ’\n’

prompt += ’\n\nDo you want to continue? [Yes/No]\n’

answer = raw_input(prompt)

result = answer in [’Y’, ’y’, ’Yes’, ’yes’]

return result

Defines:
execution confirmed of, used in chunk 7.

January 3, 2014 15

execute statements() takes as input a list of strings representing Unix
commands and passes them to the operating system for the execution. If there’s
an error the execution is aborted.

Useful python documentation:

$ pydoc subprocess

$ pydoc subprocess.call

15a 〈standard libraries 6b〉+≡ (6a) / 10

import os

import subprocess

15b 〈procedure for the execution of the TrY statements 15b〉≡ (6a)

def execute_statements(try_statements, args):

if len(try_statements) == 0:

notify(’No commands found.’, args)

sys.exit()

else:

for statement in try_statements:

notify(’Executing instruction: ’ + statement, args)

exit_status = subprocess.call([statement],

stdout=subprocess.PIPE, shell=True)

if exit_status != 0:

notify(prog_name + ’: error at system level. \n’ + \

’Execution aborted with exit status ’ + \

str(exit_status) + ’\n’, args)

sys.exit(exit_status)

else:

notify(’SUCCESS’, args)

Defines:
execute statements, used in chunk 7.

Uses notify 9b and prog name 8a.

That’s all. At the end here are listed the shabang and the usual declarations
about license and copyright, written as stated by the GNU GPL web page:
http://www.gnu.org/licenses/gpl-howto.en.html

15c 〈shabang 15c〉≡ (6a)

#!/usr/bin/env python

January 3, 2014 16

16 〈license statements 16〉≡ (6a)

Copyright 2013-2014 Ajabu Tex

#

This file is part of TrY.

#

TrY is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

#

TrY is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with TrY. If not, see <http://www.gnu.org/licenses/>.

January 3, 2014 17

Part III

What’s new in version 4
The code was almost all rewritten to implement two main new features:

the safe mode: before of executing the instructions found in the processed
file TrY prints them out on the screen and asks for a confirmation from the user;

the command line: now is implemented with the argparse library. The code
is more solid and robust, easily readable and maintenable;

I’ve also rewritten almost all the documentation, now much more in a Lit-
erate Programming style.

At last the terms of license are no more those of LPPL but GNU GPL –
General Public License.

January 3, 2014 18

Part IV

Credits and licence
Program: TrY
Version: 4.0
Release: 2013-2014
Author: Ajabu Tex <ajabutex@gmail.com>
Description: Automation tool for TeX documents
Terms of use: GNU General Public License.

The project repository is hosted on Bitbucket; feel free to contribute in any
way. If you want to fork the project or want to send a pull request, or simply
want to download the latest version, go to

https://bitbucket.org/ajabutex/try

The program is also kindly hosted as a package on CTAN:

http://www.ctan.org/pkg/try

To obtain the program code and the documentation the source file try.nw

was compiled with noweb, a simple tool for Literate Programming written by
Norman Ramsey. You can find informations about it at:

http://www.cs.tufts.edu/~nr/noweb/

http://www.ctan.org/tex-archive/web/noweb

January 3, 2014 19

Part V

Indexes

4 Chunks

〈global constants 8a〉
〈license statements 16〉
〈main module 7〉
〈procedure for the execution of the TrY statements 15b〉
〈procedure for the recognition of the char used as comment flag 12〉
〈procedure for the request for a confirmation 14b〉
〈procedure to extract TrY statements from a list of strings 13〉
〈procedure to get the list of command-line arguments 11a〉
〈procedure to notify messages on the screen and in the logfile 9a〉
〈procedure to return the collected statements 14a〉
〈procedures to collect the TrY statements 11b〉
〈shabang 15c〉
〈standard libraries 6b〉
〈try 6a〉

5 Identifiers

append to logfile: 9a, 9b
execute statements: 7, 15b
execution confirmed of: 7, 14b
get args: 7, 11a
get commentchar from: 12, 14a
get trystatement list from: 13, 14a
get trystatements from: 7, 14a
notify: 7, 9b, 13, 14a, 15b
prog author: 8a, 11a
prog cmd: 8a, 11a
prog license: 8a, 11a
prog name: 7, 8a, 9a, 11a, 14a, 15b
prog releasedate: 8a, 11a
prog revisiondate: 7, 8a, 9a
prog version: 7, 8a, 9a

