
Documentation and examples of sectioner.py 1.0

boxerer.py 1.0 and miarticle.cls

Manuel Gutierrez Algaba
irmina@ctv.es

http://www.ctv.es/USERS/irmina/texpython.htm

January 1999

1 Copyright issues

boxerer.py, sectioner.py, miarticle.cls and its documentation (this text and the
sources of tex drawings included in it) are copyrighted by Manuel Gutierrez
Algaba 1999 and you are free to use, modify , copy and distribute it under the
condition that you include this notice ad in it.

2 Introduction

This document explains all the details for the user of boxerer.py, sectioner.py
and miarticle.cls

2.1 boxerer.py

When I wrote boxerer.py there wasn’t any automated utility for doing input-
output-function boxes. Of course, you can write them directly in LATEX. But
boxerer.py has two major advantages, it’s easier to use and it’s faster to ’write’.
Besides it can be used as an interface by CASE programs. The kinds of available
drawings are good for:

• Expressing the internal structure of large pieces of code, resembling their
inner and overall structure.

• Expressing the interfaces of modules or functions ,that is, expressing mod-
ules and functions as black boxes.

And this is an utility written in python.

http://www.python.org

I imagine that it could be written in TEX but It’s 3 times easier to use
python. And what’s more important TEX programmers have a model , if they
want to do the translation.
Another point, the python code could be improved . . .

And, it generates tex code. So if you want it in postscript, gif or whatever,
use the programs dvi, gs or grab directly from a window!

1

2.2 sectioner.py and miarticle.cls

When I wrote sectioner.py there wasn’t any automated utility for handling rel-
ative sectioning in LATEX/ TEX, or I didn’t know anything about it. Of course,
you can write traditional sections in LATEX. But sectioner.py has several major
advantages:

• It’s easier to use because you don’t need to know if you are in a section,
subsection, . . . , you just go up or go down a level.

• It’s more abstract. You don’t need to take any decision about the class
of the document (article, report, letter, miarticle, . . .), this is done when
you filter the tex source through sectioner.py. This , somehow, follows the
true spirit of TEX:

To pay attention to logical design.

• It allows a greater structuration and modularity of LATEXcode, see details
below 3.2.

• You are still compatible with LATEX, because you can flatten your sources
of sectioner-LATEXinto pure LATEX(using sectioner.py), and nobody would
never know you used it.

And this is an utility written in python.

http://www.python.org

I imagine that it could be written in TEX but It’s 8 times easier to use
python. And what’s more important TEX programmers have a model , if they
want to do the translation.
Another point, the python code could be improved . . .

3 How to use it

3.1 Using boxerer.py

Always use a “from boxerer import * “ at the beginning of your python code.

3.1.1 Using the class ’included’

This piece of python code illustrates the full capabilities of included, basically,
you can put lot of structured stuff in it, this is very good, when you program
has got very rich in terms of modularity and information. This code

r0 = ("men_prin.py",None,"Here it’s the main menu is defined")
r1 = ("Graphic representation", [("tkinter.py",None,

"Main calling module"),r0],
"Graphic interfases with the user, mainly")

r2 = ("Structures of the languages(grammar)", None)
r3 = ("Configuration", [("Database of words",None),

("Labels",None)])
i = included(("Lritaunas Peki",[r1,r2,r3],

2

" This programm aims to teach \
vocabulary and grammar of different languages."))
f = open("result.tex","w")
i.genera(f)
f.close()

generates this:

Lritaunas Peki
This programm aims to teach vocabulary and grammar of different languages.

Graphic representation
Graphic interfases with the user, mainly

tkinter.py
Main calling module

men prin.py
Here it’s the main menu is defined

Structures of the languages(grammar)

Configuration
Database of words

Labels

As you notice, what it generates is LATEXcode, it can be included in a figure,
or not, as you please.

3.1.2 Using the class ’inputoutputfunction’

This piece of python code illustrates the full capabilities of inputoutputfunction,
basically, you say what are inputs, what are outputs, and what are functions
and that’s all. The generated code can be inserted directly or it can be put
in a figure. If it’s included directly ,then it’s a good idea to insert a \newline
after and before the \input command, otherwise, it can be messed with the
text below it. This code

example2=inputoutputfunction(’taxman’,
"This is your best friend, who helps you when you earn too much")
example2.do_inputs(["Your income","Your properties","The Law"])
example2.do_outputs(["Your taxes","Your fines",

"Historical information"])
example2.do_functions(["Compute your taxes","Check your lies",

"Send you to prison","Bribery"])
example2.generate_latex_code("result2.tex",200)

generates fig 1
When you don’t want to put its outputs(for example) then you got a figure

as fig 2
Besides, if you put

example2=inputoutputfunction(’taxman’,
"This is your best friend, who helps you when you earn too much",
’es’)

3

Figure 1: Input-output-function figure
taxman

This is your best friend, who helps you when
you earn too much

Inputs

* Your income

* Your properties

* The Law

Functions

* Compute your taxes

* Check your lies

* Send you to prison

* Bribery

Outputs

* Your taxes

* Your fines

* Historical information

Figure 2: Input-output-function figure, without outputs

doctor
This is your best friend, who helps you when
you are tired of life

Inputs

* Your income

* Your properties

* Your confidence

Functions

* Kill you

* Heal you

Outputs
None

4

,then it generates the labels in Spanish.

3.2 Using sectioner.py

This program is a small revolution in the LATEX–world, I think. Let’s take a
look at a sectioner-LATEX code:
\documentclass[10pt]{miarticle}

\begin{document}

\n

Lritaunas Peki Documentation

Lritaunas Peki is a programm for learning languages.

\+

Structure of the Code

\+

Graphic user interfaces

\+

Ideas

Basically, you must think about it as a nested layers of metawidgets.

So we can reuse the code.

\n

Python mega widgets

This is a nice library of megawidgets, that supports scrollbars,

multiple entries, dialogs...

\+

My meta widgets.

Trying to isolate GUI from tk and from Pmw(python megawidgets) I

wrote a higher set of widgets.

\+

Specialized metawidgets

This widgets are those really used in the GUI, they’re composites

of my meta widgets, and they make calls to the structures of

the core code~\ref{lookupindictionaries}

\-2

\n

What you really see in your screen

Blah, blah

\-2

/minput{strucincode.tex}

\n

And yeah more blah

Blah , and blah

\end{document}
Well, as you notice, \sections have been replaced by \n,\+ or \-. The line
below a \n,\+ or \- is the title of the (sub)section or whatever. There’s no

5

binding with the style of the document, if you replace miarticle by report, then
the sectioning of report style will be used. The only thing you musn’t forget
is that the title of it CAN BE ONLY IN THE NEXT LINE TO THE
\n,\+ or \-.

The \+2 or \-3 things say you go two levels up or down. And the \n stays
at the same level.

And the last thing is /minput{strucincode.tex} , this includes more code
in sectioner–LATEXstyle. As a matter of fact, all this story about sectioner is
that it’s better for modularity, look at this:
\n

Structures used

\+

Dictionaries

\+

Functions

\+

Lookups

\label{lookupindictionaries}

This is probably one of the most used flavors.. blah, blah

\-3

As you may notice , \-3 makes that all that module is encapsulated, in terms of
sectioning. Depending where you include it , you got sections, subsubsections,
or paragraphs, or whatever. And you can use labels, because, sectioner is just
a filter, when it finishes its work, you got pure LATEX, code. Of course you can
nest to the level you want (if your style allows it).

3.2.1 How to call to sectioner.py

python sectioner.py method inputfile outputfile

method can be: manolo (for miarticle.cls), article or report. inputfile would be
highnest.tex in this case, and outputfile whatever you want. As a example lets
take a look at the output (I wrote o.tex as outputfile):

6

\documentclass[10pt]{miarticle}

\begin{document}

\part{Lritaunas Peki Documentation}

Lritaunas Peki is a programm for learning languages.

\section{Structure of the Code}

\subsection{Graphic user interfaces}

\subsubsection{Ideas}

Basically, you must think about it as a nested layers of metawidgets.

So we can reuse the code.

\subsubsection{Python mega widgets}

This is a nice library of megawidgets, that supports scrollbars,

multiple entries, dialogs...

\sssection{My meta widgets.}

Trying to isolate GUI from tk and from Pmw(python megawidgets) I

wrote a higher set of widgets.

\ssssection{Specialized metawidgets}

This widgets are those really used in the GUI, they’re composites

of my meta widgets, and they make calls to the structures of

the core code~\ref{lookupindictionaries}

\subsubsection{What you really see in your screen}

Blah, blah

\section{Structures used}

\subsection{Dictionaries}

\subsubsection{Functions}

\sssection{Lookups}

\label{lookupindictionaries}

This is probably one of the most used flavors.. blah, blah

\section{And yeah more blah}

Blah , and blah

\end{document}

3.2.2 About miarticle.cls

It’s a good style when you require more than 7 levels of nesting. It has a small
bug, it says some warning when compiling. Press Return twice and forget it.

3.3 Sources of help

Well, the best you can do is to take a look at the end of boxerer.py and sec-
tioner.py where you can see how boxerer generates the draws and how sectioner
filter. Secondly, you should take a look at the source of this document, that is:
less textoolspro.tex

7

The figures are included using a simple \input command.

4 Caveats and bugs

Boxerer has no bugs. Sectioner has no bugs, miarticle has that nasty warning
about that number (forget it). Even so, there’ll be some bugs.

5 Bye bye

I hope this documentation helps you to use these utilities. It’s not difficult and
greatly profitable. And if you want to get similar drawings or improve some of
them just take a look at the code, once you get accostumed to it , you’ll find it
quite logical.

8

