
make_latex(5) make_latex(5)

NAME
make_latex − Makefile rules for LaTeX documents

SYNOPSIS
˜/lib/make_latex

DESCRIPTION
The make(1) utility provides a general mechanism for regenerating a file which depends upon other files,
when any of those other files is altered. The action is recursive. Although make(1) is normally used for
compiling programs, there is no reason why make should not be used in other circumstances where several
files must be brought together, and appropriately processed, in order to produce a desired result.

For example, to print a LaTeX document, a postscript file is required, which depends upon a .dvi file, and
other .ps files of included figures. The .dvi file depends on a .tex file, the .ps files of included figures, and a
.bib file. The .ps files of included figures may themseleves depend on .fig files or .gnu files generated by
other utilities. Thus we have a tree of file dependencies, which is exactly what make was designed to cope
with.

make_latex provides a set of rules which tell make(1) how to generate a file at one level in the file depen-
dency tree, given the files at the next level higher up in the tree. Users need only specify the file dependen-
cies in a makefile, and make(1) can do the rest. When anything is altered, make determines what needs to
be done to bring other files up to date.

make_latex knows how to do the following:

− send a .ps file to be printed
− convert a .dvi file to a .ps file
− convert a .tex file to a .dvi file (including running BibTeX if necessary)
− convert a gnuplot(1) file to a .ps file
− convert an xfig(1) file to a .ps file
− convert an xfig(1) file to a latex picture file
− tidy up intermediate files

Other capabilities can easily be added, according to individual user’s requirements.

INSTALLATION
The make_latex file should be installed in any convenient directory. Since make_latex is not large, we sug-
gest that each user has their own copy, and places it in directory ˜/lib

Some entries in the make_latex file will probably need customising to provide convenient defaults for each
user. These appear near the top of the file. (Note that it is possible to override any of these settings on an
individual basis. See below).

BIBFILES
The name(s) of the BibTeX files which hold your references.

PRINT_RES
The printer resolution (dots per inch) at which you normally print. 300 should be ok for most
people.

PRINTER The name of the printer to which normal resolution print jobs should be sent by default.

PR_HI_RES
The name of the printer to which high resolution (>400 dpi) print jobs should be sent by
default.

LPR The name of the print command. lpr should be ok for most people.

13 October 1993 1



make_latex(5) make_latex(5)

PR_OPT The default options to be sent with each print command. Generally set to "-r", to delete a
postscript file after printing it.

OLDVERSIONS
The filename pattern(s) to match for files to be deleted by a "make clean" (see below).

MAKEFILE FORMAT
In each directory holding LaTeX documents, a file named Makefile is required. A sample file is as follows:

include $(HOME)/lib/make_latex
FILES = myfile paper
myfile.dvi : fig1.ps fig2.ps part2.tex
paper.dvi : complex.ps dna.ps

The first line loads the rules from the make_latex file. The second line (an example of a macro assignment)
specifies the names (without extensions) of all the major LaTeX files in the directory. The final two lines
specify file dependencies. In this example, myfile.tex has two included figures, fig1.ps and fig2.ps, and also
an included LaTeX file, part2.tex.

If a file exists called fig1.fig (generated by xfig(1)) or fig1.gnu (a gnuplot(1) file), make knows that fig1.ps
depends on fig1.fig or fig1.gnu − there is no need to specify this.

Entries on each line are separated by whitespace. If there are more entries than can fit on a single line, line
breaks must be escaped by the "\" character.

Note that the order of lines in the Makefile is not critical, except as noted in the section: Overriding
Defaults.

TARGETS FOR MAKE
Processing is initiated with the command make(1), followed by the name(s) of the "target" files to be gener-
ated. For example,

make myfile.ps

will do all that is necessary to generate myfile.ps; it will run LaTeX on myfile.tex (and if required, BibTeX,
followed by re-running LaTeX), then run dvips on myfile.dvi to produce myfile.ps. Similarly, "make
myfile.dvi" will just generate myfile.dvi. The command "make myfile" will also generate myfile.dvi, but
will work unconditionally, even if make doesnt think that anything has changed. (This can be useful if, for
example, a style file is altered, and make doesnt know about the dependency.)

The command

make myfile.pr

is an example of a special target. It does not produce a file called "myfile.pr" − instead it generates
myfile.ps, and then sends it to be printed.

Other special targets are:

all to generate all .dvi files

allps to generate all .ps files

allpr to generate and print all .ps files

tidy to delete log files and intermediate files which can easily be recovered

13 October 1993 2



make_latex(5) make_latex(5)

clean to tidy, and delete intermediate files which can less easily be recovered

OVERRIDING DEFAULTS
Default macro assignments can easily be overridden on a per-Makefile or per-LaTeX file basis. For exam-
ple, to specify "alternate.bib" (a file in the current directory) as the BibTeX source file for all LaTeX files in
the Makefile, insert the line:

BIBFILES = alternate.bib

(This line must come after the "include" line.) If you wish to specify that "alternate.bib" should be con-
sulted in addition to the default BibTeX file(s), use:

BIBFILES += alternate.bib

To override a default value only for specific LaTeX files in the Makefile, a conditional macro assignment
can be used, with the format:

<target> [...] := <macro assignment>

For example, to specify a different BibTeX file for myfile.tex, use:

myfile.dvi := BIBFILES = newrefs.bib

which in effect means "when generating the file myfile.dvi, use the assignment: BIBFILES = newrefs.bib".
Another example: to specify a different printer for plan.tex, use:

plan.pr := PR_LO_RES = laser1

Note that it is important use the right target name. An entry of the form:

plan.ps := PR_LO_RES = laser1

would have no effect, since the value of PR_LO_RES is irrelevant while plan.ps is being generated.

COMMAND LINE OPTIONS
In addition to being able to override defaults in the Makefile, macro values can be specified on the com-
mand line. For example, to print plan.tex on printer "pr1", use:

make PRINTER=pr1 plan.pr

Note that no spaces are allowed around the "=". Note also that command line macro assignments do not
override conditional macro assignments in the Makefile. The assignments you would be most likely to want
to change on the command line are:

PRINTER Printing device for low resolution (<400 dpi) output.

PRINT_RES
Resolution (dots per inch) to print at.

PR_HI_RES
Printing device for high resolution (>400 dpi) output.

PA GE_F Page number to start printing from.

PA GE_T Page number to print up to.

13 October 1993 3



make_latex(5) make_latex(5)

TIDYING UP
The targets tidy and clean can be used to delete unimportant files.

Tidy will delete all .dvi, .ps, .log, and .blg files generated from any file specified in the FILES assignment.
It also deletes any files specified in an assignment to TIDYFILES. Note that other .ps files (such as those
generated from .fig or .gnu files) are not deleted, unless specified in a TIDYFILES assignment.

Clean will delete all tidy files, and also delete .aux and .bbl files generated from any file specified in the
FILES assignment. Editor backup files which match the pattern specified in OLDVERSIONS are also
deleted, along with any files specified in an assignment to CLEANFILES.

SEE ALSO
make(1), latex(1), bibtex(1)

AUTHOR
David Beasley <David.Beasley@cm.cf.ac.uk>

13 October 1993 4


