
The GELLMU Manual

Version 0.8.4 Release, July 2007

William F. Hammond
Dept. of Mathematics & Statistics

University at Albany
Albany, New York 12222 (USA)

hammond@math.albany.edu

Revision of July 6, 2007

Copyright c© 2001–2007 William F. Hammond

Abstract

This is the manual for Generalized Extensible LATEX-Like Markup (GELLMU). The
central focus in the GELLMU project is to tie LATEX to the worlds of SGML and XML by
providing LATEX-like markup for writing documents under SGML and XML vocabularies
(formally known as document types).

The Manual explains the distinction between basic and advanced use, provides a de-
scription of regular GELLMU as an instance of advanced GELLMU, and discusses the
use of the didactic production system, which is the project’s suite of processors for working
with regular GELLMU.

The Manual also deals with the metacommands available when writing GELLMU
markup. One of these metacommands is the project’s emulation of LATEX’s newcom-
mand, which makes it possible to have macros taking multiple arguments while writing for
an SGML or XML vocabulary.

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic GELLMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Metacommands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 \documenttype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 \newcommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 \begin{} . . . \end{} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 \macro and \Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Macro-Level Fronting of SGML Element Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Advanced GELLMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Illustrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Multiple Argument/Option Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Limitation in Regard to XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



5 The Didactic Document Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Suggestions and Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Markup Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2.1 Explicitly named commands.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.2 Certain single characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.3 Certain strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Large Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5 Labels, References, and Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.5.1 Labels and Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5.2 Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5.3 Example Emulating a LATEX Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.6 General Usage for Sectional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.6.1 The Content Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6.2 The LATEX-Like Form of General Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.7 verbatim, verblist, and manmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.8 Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.9 Tabular Environment Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.10 Graphic Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Mathematics in article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.2 Usage for assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Equations and Equation Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4 The \mathsym Metacommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 The Didactic Production System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Other Required Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.4 Using the syntactic translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4.1 Operation in Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4.2 Interactive Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4.3 Interrupting the Syntactic Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.5 Using the didactic production system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.5.1 Staged Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.2 Default Staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.3 Parsing with nsgmls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2



7.5.4 Processing with sgmlspl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5.5 Environmental Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix A The GELLMU Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix B Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.1 Comments on the Syntactic Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.2 Comments on the Didactic Production System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B.2.1 Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.2.2 Document Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.2.3 Translation to XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.2.4 Translation to HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.2.5 Translation to LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2.6 Future Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1 Introduction

GELLMU is an acronym for “Generalized Extensible LATEX-Like MarkUp”, which is the au-
thor’s concept for using LATEX-like markup to write consciously for SGML document types such
as HTML, DocBook, TEI, or GELLMU’s own didactic LATEX-like document type called ar-
ticle.

It evolved from earlier thought about delineation of a coherent subset of LATEX commands with
the property that if a LATEX document used only those commands then it could be translated
with full reliability to other formats including HTML so that documents could be prepared
both for print and for the web from a single source.

Problems with this early thought during the years 1996–1997 included the fact that there did
not seem to be a community of LATEX users willing to focus on a narrow vocabulary and the fact
then of a legacy practice that mixed LATEX commands freely with non-LATEX TEX commands.

The present idea was crystalized in the summer of 1998 while the author was looking at Ulrich
Vieth’s LATEX markup for the TEX Directory System (TDS) specification from the TEX User
Group (TUG), which now is physically realized in TUG’s TEXLive series of TEX-related soft-
ware distributions on CDrom. The HTML version of that specification was derived through
an intermediate ad hoc translation from LATEX to Texinfo, the language of the GNU Docu-
mentation System, which is a robust hypertex system pre-dating HTML driven by TEX the
Program.

In thinking about generalizing Vieth’s ad hoc translation, which used GNU Emacs Lisp (Elisp),
one of the most widely available free1 cross-platform programming languages for which there is
a free robust engine, the same engine that underlies the interactive editing interface of Emacs,
the author realized that the structure of Texinfo is very much like that of an authoring level
SGML document type. From that idea it was a small step to decide that one might profitably
write Elisp code to use LATEX-like markup for the conscious writing of a new LATEX-like article
document type.

1URI: http://www.gnu.org/

3



The idea, which by itself saves keystrokes, gains significant power with the emulation of LATEX’s
newcommand. Although SGML markup offers both subdocument inclusions and macro sub-
stitutions using the notion of entity, there is no SGML-standard macro facility that takes
arguments. Moreover, GELLMU’s newcommand, which is, unlike LATEX’s, a simple macro
substitution facility, also provides a base for experimenting with document type extensions in
a way that the SGML notion of entity does not since SGML entities are invoked with a no-
tation that is apart from that used to markup with SGML elements, which are the objects
corresponding in the GELLMU scheme with LATEX-like commands.

Software associated with the GELLMU project falls into two parts:

1. The syntactic translator. This is a purely syntactic layer for converting LATEX-like
markup in configurable ways to SGML markup. Its output may be handled in standard
SGML or XML systems.

2. The didactic production system. This component is a sketch, which might usefully
serve as a base for further development, of an SGML production system for an authoring
environment that consists of

(a) An SGML document type called article that is accompanied by a corresponding
XML document type.

(b) A package of extensible translating utilities written in the language Perl.

As its name suggests, these materials are didactic and should be regarded as unfinished
for production work.

There are two overall concepts: basic mode and advanced mode. The basic mode may be used
to write consciously for any standard document type such as HTML, DocBook, or TEI, and
the syntactic translator is for that mode the only software under this project that might be
relevant. The advanced mode incorporates a configurable broader array of LATEX-like markup
features, mostly for brevity, in the syntactic translator. This mode is fully developed only for
use with a LATEX-like document type such as the didactic article document type that is part of
the didactic production system.

One may use any SGML or XML processing framework in working with the article document
type. The didactic production system includes what is needed to produce both HTML and
regular LATEX forms of an article instance. Consequently, one is able to produce both DVI
using the LATEX format for TEX, the program, and PDF using the LATEX format for PDFTEX,
the program. Moreover, one may tune the PDF in various ways using small alterations of the
Perl code for translating the XML version of article to regular LATEX.

2 Basic GELLMU

Neither the basic nor the advanced mode involves in any way adoption of the language of LATEX.
(But many command names under the didactic article document type, mimic LATEX command
names.) There are two fundamental ideas:

1. A LATEX-like command "\foo" corresponds to an SGML element "<foo>".

4



2. The syntactic translator is almost entirely ignorant of vocabulary and a name like foo
need not have meaning in it although it must have meaning in the document type for
which one is consciously writing.2

To use the basic mode one must be familiar with the SGML document type for which one is
writing. Ordinary HTML is an example. Very few of the features in the advanced markup
not also part of the basic markup3 make any sense for use in the direct preparation of HTML
with LATEX-like input.

GELLMU uses LATEX special characters such as ‘\’, ‘{’, and ‘}’ along with LATEX-like argu-
ment/option syntax, where braces immediately following a command name indicate command
arguments and square brackets, i.e., ‘[’ and ‘]’, indicate command options. A command
corresponds to an SGML element, and in basic mode a command may have at most one argu-
ment, the content of which corresponds to SGML element content, and at most one option, the
content of which corresponds to a list of SGML attribute specifications. Thus for example, in
basic mode for HTML one may use the markup

\a[href="http://www.w3.org/"]{The World Wide Web Consortium}

to form the HTML anchor:

<a href="http://www.w3.org/">The World Wide Web Consortium</a> .

(The formation of anchors with the didactic article document type in advanced mode is slightly
more complicated because the characters ‘=’ and ‘/’, which may acquire special (and “over-
loaded”) semantic significance in mathematical contexts, are held for delayed evaluation as
empty elements and because the syntactic translator, which does not recognize command names,
regards this usage in advanced mode as multiple argument/option syntax (section 4.2), which
is not part of basic mode.)

An example of the distinction between basic and advanced GELLMU is that in advanced mode
it is possible and easy to arrange to have a blank line, as in LATEX, represent the beginning of
a paragraph. In basic mode for HTML one must4 use "\p" to begin a paragraph, and for the
XML version of HTML one must also provide markup for the end of every paragraph, which
may be done in several ways.

For some of the details on using the basic markup with HTML see Using the GELLMU Syn-
tactic Translator to Write HTML5. It will be instructive to have the parallel source markup6

available at the same time.
2The syntactic translator does, however, have some facilities for classifying the names in a list in regard to

common syntactic behavior. See, in particular, the Elisp variables gellmu-autoclose-list and gellmu-parb-hold,
both of which are not significant in basic GELLMU.

3With several minor exceptions, one related to the direct writing of SGML attributes (which cannot contain
markup and which do not have many parallels in LATEX) and another related to the way of escaping the character
‘\’, everything about basic mode also applies to advanced mode.

4There is a way, with the setting of several variables for the syntactic translator in advanced mode, to have
blank lines begin new paragraphs in basic input for HTML

5URI: ghtml.html
6URI: ghtml.glm

5



3 Metacommands

A metacommand is a LATEX-like command that does not correspond to an SGML element.
Each metacommand is handled internally by the syntactic translator.

3.1 \documenttype

A document prepared in GELLMU source usually begins with a documenttype command. For
example,

\documenttype{html}

is used to begin a document prepared for the most common form of classical HTML.

The syntactic translator has two public variables gellmu-doctype-keylist and gellmu-doctype-
info, which are Elisp associative lists, that enable one to match XML or SGML "<!DOCTYPE
... >" declarations with LATEX-like

\documenttype[my-optional-key]{my-doctype}

commands, where my-optional-key is available to override a default key for my-doctype.
Thus, for example, “\documenttype{html}” points to the default key for "html", which is
"html-4.01" and which points to the W3C HTML 4.01 Transitional document type, while

\documenttype[xhtml-1.0s]{html}

indicates W3C XHTML 1.0 Strict.

A user may configure these variables without modifying the source code for the GELLMU
syntactic translator, but minimal knowledge of Elisp will be required. A future release might
provide a configuration file for this purpose.

A second option for the documenttype metacommand, which must follow the single required
argument, is provided for writing an internal declaration subset. The contents of an internal
declaration subset constructed this way may be any internal declaration subset material. How-
ever, some care is required for entering characters that are special. To ease the handling of
special characters four metacommands have been provided for use inside the internal declaration
subset:

\attlist{...}
\element{...}
\entity{...}
\notation{...}

For example, a user who wishes to be able in source to use “&quo;” to reference the ASCII
quotation mark when writing consciously in basic mode for TEI.2 would begin the source file
with:

\documenttype{TEI.2}[
\entity{quo "&#x22;"}
]

6



3.2 \newcommand

From a user’s viewpoint this provides emulation of LATEX’s newcommand. But it is a simple
facility providing macro substitution with arguments forward in a source file from the point of
its occurrence. It differs from the newcommand facility in LATEX in that it does not add the
name of a newcommand to any namespace. Instead, as the syntactic translator encounters
each newcommand definition, it performs the corresponding expansions and then forgets the
name.7

The general construction of a newcommand definition is

\newcommand{name}[nargs][first]{value}

where name is the name of the newcommand, nargs optionally specifies the number of its
arguments, first is an optionally-provided default value for the first argument, and value denotes
the value string.

In the value string the character ‘#’ is used to reference an argument by the numeric value of
its position. Thus, "#1" refers to the first argument that is provided at an invocation of the
newcommand, "#2" the second, etc., and there is no limit on the number of arguments. It is
not required that nargs be supplied in order to define and use a newcommand taking arguments.
However, for the sake of automatic error checking the use of nargs is strongly recommended
when the definition of a newcommand taking arguments is entered.

Example. In writing HTML one might use

\newcommand{\href}[2][http://www.w3.org/]{\a[href="#1"]{#2}}

for brevity in writing many HTML anchors. With this definition the invocation

\href{http://www.myweb.mydomain/me.html}{my web page}

gives rise to the HTML markup

<a href="http://www.myweb.mydomain/me.html">my web page</a>

while the invocation “\href{Web Central}” gives rise to

<a href="http://www.w3.org/">Web Central</a> .

Rules.

1. The name of a newcommand may not be referenced in its value string.8

2. A newcommand may not be invoked before it is defined unless the invocation occurs in
the value string of another newcommand definition in which case the definition of the
latter may be first and must be first if the invocation of the former in the definition of
the latter involves argument substitutions.

7This means that it is a relatively slow form of processing, but the author believes that it is a good match
for the intuitive expectations of most LATEX users.

8In a future release an alternative metacommand called frontcommand may be provided which could be used,
for example, if one wishes to have a macro name of some kind match the name of an actual SGML element.

7



Failure to observe these rules may cause the syntactic translator to enter an infinite recursive
loop. If a user suspects this may have happened, then the invocation of the syntactic translator
should be interrupted (section 7.4.3).

3.3 \begin{} . . . \end{}

These provide emulation of LATEX environment notation without actually providing anything
that is not otherwise available. Markup which resembles that for a LATEX environment simply
resolves to an SGML element. This usage may be convenient for SGML elements of large
scope such as, for example, the body of an HTML document.

With advanced mode the special form

\begin{document} . . . \end{document}

may be used to emulate the corresponding feature of LATEX for a document type, such as the
didactic article document type, that in the large consists of a preamble and a body.

3.4 \macro and \Macro

Use of these is discouraged in the absence of a need. One situation that presents a need is
name “fronting”: see the discussion below in section 3.5. Please note that in most situations
one may use newcommand without an argument for simple macro substitutions.

macro and Macro do very much the same thing except for the order of expansions. Every
macro is expanded forward as encountered before any newcommand definition is expanded.
Every Macro is expanded forward after every newcommand has been expanded.

There are four primary differences between macro and Macro, on the one hand, and newcom-
mand, on the other hand.

1. Neither macro nor Macro can be used to define a macro that takes arguments.

2. The name of a newcommand must consist of word characters, but there is no restriction on
the characters, apart from unbalanced brace characters (‘{’ and ‘}’), that may appear
in the name field of a macro or Macro metacommand.

3. If the name of a macro or Macro does not begin with the command sequence introducer,
i.e., the character ‘\’, then an invocation of that metacommand is given by every forward
match of its name. The use of such names is strongly discouraged because document
segments can then become opaque much too easily.

4. A newcommand invocation, absent the use of a semi-colon for termination, is only effec-
tive at the whole word level — with word here denoting a maximal string of successive
word characters — whereas macro and Macro invocations are effective regardless of word
boundaries.

Elaboration on the last point: If x is the name of a newcommand, then invocations are only
considered by the syntactic translator on the string “\x” when it is followed by a non-word
character. For example, if the locale is us-ascii, then the word characters are the 52 upper

8



and lower case letters and the ten numerals. Therefore with newcommand, as with its namesake
in regular LATEX, the use of “x” as a name will not intercept the occasions of "\x" as an initial
substring of "\xy". With either macro or Macro such interception does take place. One
may block it at the point of an invocation with the markup "\x;", and when this is done, the
terminating semi-colon is removed.

Human authors using either macro or Macro may find unanticipated interactions between the
three forms of macro substitution.

Unbalanced brace characters, i.e., the characters ‘{’ and ‘}’, may not be used in the name
field or the value field of any form of macro metacommand.

3.5 Macro-Level Fronting of SGML Element Names

The word fronting as used here describes the practice of modifying the meaning of an SGML
element name by using one or more of the macro facilities to generate usage of the same name
as an element combined with other markup using the syntax that would otherwise correspond
to basic use of the element.

Suppose, for example, one wants all paragraphs in HTML (marked with \p in GELLMU
source) to be placed in a (style) class called custom.

Recommended procedure: Create a new unique name and then use macro to front it.

\newcommand{\cp}[1][]{\p[class="custom"]{#1}}
\macro{\p}{\cp}

Each invocation of “\p{...}” will first be replaced by “\cp{...}” because all macro definitions
are expanded before any newcommand definition is expanded. Subsequent expansion of the
newcommand will yield

\p[class="custom"]{...} .

This will not intercept the alternate, otherwise nearly equivalent, markup given with \begin{p}
. . . \end{p} since newcommand is based on simple macro substitution and does not operate at
the level of namespaces.

4 Advanced GELLMU

The idea with advanced GELLMU is that for SGML document types sharing structural char-
acteristics with LATEX one might wish to have the syntactic translator provide LATEX-like markup
syntax beyond the level used with basic GELLMU and that these additional layers of syntax
should be configurable. The only substantial realization of this program so far is the case
of the GELLMU didactic document type called article. The specifics of that realization are
discussed in the following section.

4.1 Illustrations.

One might want to be able to use blank lines, as in LATEX, for introducing new paragraphs in

9



a document type that provides paragraphs.

In some article-level document types each sectional unit has a unit header providing markup for
various, often optional, unit descriptors. It is convenient to be able to use LATEX-like multiple
argument/option syntax (section 4.2) for these.

If the document type provides authoring-level mathematical markup beyond inclusions of the
World Wide Web Consortium’s Mathematical Markup Language9 (MathML) under its XML
namespace10 regime, then one might want to be able to use the ‘$’ character to toggle in and
out of inline math, and if the document provides for math displays, then one might want to use,
as in LATEX, the strings "\[" and "\]" as delimiters for unstructured mathematical displays,
and markup such as

\begin{equation} . . . \end{equation}

for a single equation, and markup such as

\begin{eqnarray} . . . \end{eqnarray}

for a list of equations.

It is important to emphasize, however, that by overall system design the syntactic translator
operates without substantial knowledge of vocabulary. While it is true that if ‘$’ is to provide
a toggle for an inline element containing math, say, tmath, then the syntactic translator needs
to have that association made, but the association is provided as the value of a configuration
variable in the syntactic translator that can be changed between documents so that the syntactic
translator may be used with many document types.

One way to make such configuration convenient is to use an array of Elisp functions that are
fronts with various variable configuration packages for the basic function gellmu-trans in the
syntactic translator.

The general outline for advanced GELLMU with arbitrary document types is not fully devel-
oped in the present release. Instead the project has concentrated on the realization of these
ideas for the project’s didactic article document type, which is the subject of the next section.

As the syntactic translator stands now, basic mode is characterized in the syntactic translator
by the true setting for its Boolean variable gellmu-straight-sgml, while the configuration used
by default for the didactic document type (which could be handled in basic mode with more
verbose source markup) has that variable set false and also the variable gellmu-regular-sgml set
false.

The term regular GELLMU refers to use of the syntactic translator with the default config-
uration for the didactic document type. It involves nearly maximal emulation of LATEX-like
markup; it implies both advanced mode and the didactic document type (section 5) article.

4.2 Multiple Argument/Option Syntax

An essential point in the present design is that the whole system is built from components, each
9URI: http://www.w3.org/Math/

10URI: http://www.w3.org/TR/REC-xml-names

10



of which has its own function11. Consistent with this design the syntactic translator operates
with knowledge of syntax but little or no knowledge of language.

Multiple argument/option syntax has been built into advanced mode as part of the overall idea
of providing, where sensible, LATEX-like features in a precise user markup interface for writing
in document types under SGML and XML.

What are the rules for converting the multiple argument/option syntax in source markup into
SGML? Direct conversion by the syntactic translator of this type of usage into XML is not
available because such conversion requires some language knowledge and the program does not
operate with knowledge of language at that level12. One obtains an XML version of a document
in the didactic production system by using a translator with minimal knowledge of the command
vocabulary to create the XML version from an SGML version that is the immediate output of
the syntactic translator.

In multiple argument/option syntax, which is much like that of LATEX, arguments and options
follow command names. Arguments are delimited by braces, i.e., ‘{’ and ‘}’ and options
by square brackets, i.e., ‘[’ and ‘]’. There must be no white space between the arguments
and options nor between the command name and the first member of an argument/option
sequence.

Each command with a multiple argument/option sequence is translated to an open tag whose
name is the name of the command. Each argument is translated to an ag0 element and each
option to an op0 element. (Both ag0 and op0 lie in GELLMU’s reserved name space.) There
are two exceptional cases.

1. The first argument or option is an option inside which the very first character is a colon,
i.e., ‘:’. This is the method provided in advanced mode for the direct entry of an SGML
attribute sequence.13 The entire contents of the option string, apart from the leading ‘:’,
which is discarded, are understood to be a sequence of SGML attributes for the SGML
element whose name is the name of the command. There is no syntax check of the
attribute contents by the syntactic translator. Such an attribute option is not treated
as an op0 element. In particular, an attribute option is correctly followed immediately
by a semi-colon, i.e., the character ‘;’, if and only if the corresponding SGML element
is a defined-empty element under the SGML document type. Since SGML attributes
correspond to very little of classical LATEX14, attribute options are seldom used15 in the
didactic production system. One such use is for the GELLMU equivalent of latex’s

11In the prototype production system based on the didactic article document type the output from each stage
is available for examination and, where necessary, intervention. However, such use of intervention is intended
only for temporary expedient use while a GELLMU system is being designed or enhanced. As with LATEX,
enhancement is an ongoing process.

12In handling GELLMU source markup one could provide a more elaborate processor that can be configured
to know for each such command the list of names for its positional arguments and options. It was decided that
this goes somewhat beyond syntactic handling but that the question of whether a list of arguments and options
corresponds to sole content might be regarded as a syntactic matter.

13Its use is optionally permitted in basic mode as well.
14Indeed, LATEX usage allows markup in options, but (element level) markup is not permitted in SGML

attributes. Note, however, that in the didactic document type the SGML content model for an option is more
restrictive than that for an argument. Also in the didactic document type some options, such as that for anch,
which is described later in this section, are practically required.

15To say seldom is not to say not. Two important instances in the didactic production system are the series
attribute for the label command, which stands in, to the extent possible, for the notion of counter in LATEX, and
the type attribute for the series command, which provides emulation of counter conversion from, say, number
values to letter values.

11



equation* and eqnarray* environments, which is marked up this way:

\begin{equation}[:nonum="true"]
e = mc^2
\end{equation}

to produce:

e = mc2

2. The first argument is the only argument and there are no options apart from a possible
attribute option. This case, which is extremely common, is exceptional relative to argu-
ment/option handling since the sole argument simply becomes element content without
an ag0 wrapper.

When a command has a multiple argument/option sequence, the question arises whether the
ag0 and op0 elements that arise from the arguments and options are the only content of the
element corresponding to the command. The syntax does not provide a way to determine
this. On the other hand, the SGML document type definition does provide information that
indicates whether other content is possible. It is beyond the scope of the design of the syntactic
translator for the syntactic translator to read a document type definition. The syntactic
translator does, however, have a configurable list variable gellmu-autoclose-list that contains
the names of elements for which no content beyond the elements arising from arguments and
options is possible. While it is not necessary that every such command be entered in this list,
when such a command not in the list is not explicitly followed by an element closing command,
it is possible in some instances for an SGML parser to infer incorrectly the location of end
of the element. Thus, the didactic production system provides a command anch for making
anchors. The document type definition provides for one option, a reference, and one argument,
the anchored text.16 Because the syntactic translator does not consider the document type
definition, if one enters the markup

\anch[href="http://www.w3.org/"]{W3C} HQ ,

unless the name anch is in the list17 gellmu-autoclose-list, an SGML parser will not have reason
to close the anch until it sees the space following the anchored text “W3C”, and so that space
will be considered insignificant white space with the result that there will be no space between
the anchored text and the following “HQ”.

4.3 Limitation in Regard to XML

A final general comment about advanced mode is that the features it can provide beyond basic
mode when one is writing consciously for an XML document type are somewhat limited. For
example, blank lines cannot easily be made adequate for paragraph markup with the XML
form of the didactic article document type. Although it is not a specific limitation for future
editions of the syntactic translator, the vision is that use of advanced mode will be specifically
for a somewhat rich SGML version of a document type.

16In the XML version of article the option becomes the element anchref and the anchored text becomes the
element anchv. One may use these names directly in GELLMU source, but option/argument notation is more
familiar and more succinct.

17There was no list of this type in early pre-release versions of the syntactic translator.

12



5 The Didactic Document Type

The didactic document type is the document type underlying what is called regular GELLMU.
It is the heart of the idea of GELLMU as a bridge for authors from LATEX to the world of XML.
More specifically, the bridge is from the world of a LATEX article to a document type in the
world of XML, also called article, that has a structure and a vocabulary similar to those of the
LATEX document class.18 The techniques used in the didactic production system are extensible
and can be carried over to other types of documents than articles. It is important to note that
there are many features in regular LATEX which have no analogue so far in the development of
this project. One might hope to get an idea of the extent of coverage by reviewing the examples
in the project archive (appendix A).

When an author prepares a document as a LATEX article, the document is being marked up as
data for a specific typesetting program: Donald Knuth’s program TEX running with the main
LATEX facilities loaded.

When an author prepares a document as GELLMU source, the syntactic translator provides
a LATEX-like markup interface, but its output is not data for a specific typesetting program.
Rather it is data for a broad class of processors. This means that multiple output formats
can be obtained from a single source without the need for human intervention because XML
provides a framework that makes it relatively easy to create reliable programs for translation
from an XML document type to other formats. It offers, moreover, the possibility of translation
to future formats free of any need for human intervention once translators from the original
document type to such formats are written. The small price one pays for this advantage in
moving from LATEX markup to GELLMU markup is that the author must learn a few new
things.19

There are two formal constructions of the didactic document type. The name of the document
type is article. The first construction is an SGML version of article that provides features
convenient for authors that are not available under XML. The second is an XML version. For
most non-technical purposes the two constructions should be regarded as equivalent.

The SGML construction of an article is derived from GELLMU source markup for a document
by using the syntactic translator. The didactic document type is accompanied by a translator
implemented under the Perl language framework sgmlspl by David Megginson (see the release
notes in appendix B for more information) for converting the SGML version of an article to
the XML version.

The description in this section of the manual deals primarily with source level markup for the
didactic document type and with how it is handled 20 by the time the XML version of an article
is generated. Secondarily there is comment on how it is rendered in the chief output formats

18The LATEX concept of document class has only a loose correspondence with the SGML concept of document
type.

19It is not inconceivable that at some future point conscious writing for some XML document types using
LATEX-like markup might be subsumed in the LATEX project, but in saying this, the author is neither predicting
it nor assessing the merits of the idea. He has no affiliation with the LATEX project other than as a user.

20Strict discussion of an SGML document type would not allow use of the word handled. In this instance a
coordinated pair of document types is being described, one SGML and the other an XML translation. For most
purposes the SGML document type is the richer of the two. However, because of its use of a handful of generic
elements (in its reserved namespace consisting of names that contain ‘0’ (zero) as first numeric character) for
modeling certain convenience features of LATEX, it is possible for a correct translation of a valid SGML article
to yield an XML version that fails validation because the content models of the generic elements are necessarily
loose.

13



of the didactic production system, which are PDF, classic HTML, and XHTML+MathML.

A quick glance at the flowchart (section 7.5.2) shows that the first XML stage — author-level
XML — may be viewed as a second entry point to didactic production system processing.
Some day this could become a reasonable formatting route for translations from things like
Texinfo, DocBook, and, even perhaps, classical LATEX itself via a processor such as tex4ht.

5.1 Suggestions and Caveats

Although this is the manual for a software release, it is not a book. A document of book size
would be required for a full description of the didactic production system.

Much of the markup vocabulary is copied from LATEX. There are some instances where there
is some deviation from LATEX usage, and many of those instances are mentioned here.

Definitive information about the didactic document type may be derived by consulting the
document type definition. Because the didactic production system is conceived as a base for
future development there are sketches in the document type definition that are not covered by
the didactic processors. For example, although there is sketched code for the analogues of
LATEX’s paragraph and subparagraph commands, which are sectional in nature, that is found in
the translation from SGML to XML, there is no sketched code for these elements in the two
formatters.

Another way to obtain information about the didactic production system is by studying exam-
ples including this manual and the examples in the project archive (appendix A).

5.2 Markup Fundamentals

There are several kinds of commands:

5.2.1 Explicitly named commands.

Apart from macro level metacommands an explicitly named command begins with a maximal
string introduced by the character ‘\’ followed by word characters, including the
numerals ‘0’, ‘1’, . . . , ‘9’. The notion of word character depends on one’s locale, a concept
that is formalized in GNU Emacs. In the ASCII character set the word characters are the 52
upper and lower case letters and the 10 numerals. The first numeral, if any, must not be
‘0’ since such names are reserved for use by the syntactic translator. Command names are
case sensitive.

An explicitly named command is a container, corresponding to an SGML element, if its name
is immediately followed, without intervening white space, by the character ‘{’. In that case
the delimited zone of containment normally ends with the subsequent balancing character ‘}’.
(LATEX-like multiple argument/option (section 4.2) chains deserve more discussion; for now
it will suffice to point out that the use of the \anch command in this document for making
“anchors” is an example, and, of course, LATEX’s \frac command is another example. For the
present discussion these commands are considered to be containers.)

An explicitly named command corresponds to an SGML defined-empty element if its name is
immediately followed, without intervening white space, by the character ‘;’.

14



An explicitly named command corresponds to an SGML element closing tag if its name is
immediately followed, without intervening white space, by the character ‘:’.

The name of an explicitly named command is terminated by a non-word character. There is
a small, possibly acceptable, level of syntactic ambiguity unless the name terminator is one of
‘{’, ‘;’, ‘:’, or ‘[’.

In basic mode if the name terminator is ‘[’, then that character introduces a list of SGML
attribute specifications, each of the form name="value", and the list must be terminated by
the character ‘]’. Then if the following character is ‘{’, the named command is a container
that ends with the balancing ‘}’. Otherwise the following character may be ‘;’ if the named
command is a defined-empty element and must be so in that case for direct editing of an XML
document type.

In advanced mode if the name terminator is ‘[’, then that character introduces a LATEX-like
command option — part of the emulation of LATEX’s multiple argument/option syntax (section
4.2) — unless it is immediately followed, without intervening white space, by the character ‘:’,
in which case the bracketed content is a list of SGML attribute specifications. (The initial
‘:’, which may be used optionally in basic mode, is discarded.)

In any other case there is some syntactical ambiguity. The syntactic translator will produce a
corresponding SGML open tag unless the logical variable gellmu-xml-strict has been set.21 If
the usage is consistent with the structure of the document type, an SGML parser will in many
cases be able to handle the result correctly. The result of this type of syntactic ambiguity
in source markup is not tolerated if one is editing directly for an XML document type. The
terminator can be a blank space, but, if so, the blank space is likely to become invisible after
SGML parsing much in the way that in LATEX the markup

\LaTeX document

will be collapsed into the single word form “LATEXdocument” when typeset.22

5.2.2 Certain single characters.

The characters ‘\’, ‘{’, ‘}’, ‘^’, ‘ ’, ‘$’, ‘%’, and ‘~’ have command meanings that are
similar to their meanings in LATEX. The characters ‘;’ and ‘:’ are ordinary characters that
have special meaning at the end of a command name. The character ‘#’ is also a special
character used, as with LATEX, in newcommand templates. In source for the didactic article
document type any non-alphanumeric ASCII character may be escaped (referenced for itself)
with a named command, e.g. ‘~’ may be referenced for itself as \tld;. This is necessary in
order to provide delayed evaluation for ultimate translation to one of many possible ultimate
formats.

The following language meanings apply to both basic and advanced markup:

1. “\”: Command introducer.
Escape in basic mode: \\ . This escape is incorrect in advanced mode since this notation

21The variable gellmu-xml-strict is by default unset in advanced mode.
22The correct LATEX markup is “\LaTeX{} document”. In the didactic production system the name of LATEX

is “latex”, which is a defined-empty element, that for the SGML version of article may be marked up safely
either as “\latex;” or as “\latex{}”.

15



has a different meaning — forced linebreak — in LATEX itself. For the didactic article
document type the escape is \bsl; . For other document types one may resort to an
entity reference if adverse to providing a corresponding defined-empty element or if one
lacks control of the document type.

2. “{”: Command argument opener.
Escape: \{ or \lbr; .

3. “}”: Command argument closer.
Escape: \} or \rbr; .

4. “[”: Command option opener.
Escape: \lsb; (usually not necessary23).

5. “]”: Command option closer.
Escape: \rsb; .

6. “;”: Command terminator for defined-empty tags.
Escape: \scl; . Usually an ordinary character. Its use as a command terminator is
invisible and may be omitted optionally in some contexts. This syntax is analogous to
the use of ‘;’ as an entity reference terminator in SGML.

7. “:”: Command terminator for close tags.
Escape: \cln; . Otherwise an ordinary character. Its use as a command terminator is
invisible.

8. “%”: Comment introducer, in force to end of line.
Escape: \% or \pct; .

9. “#”: Argument marker in newcommand definitions.
Escape: \# or \hsh; . In the definition of a newcommand “#1” indicates the first
invocation argument, “#2” the second invocation argument, etc. (There is no limit on
the number of arguments.)

The following language meanings apply to advanced markup with allusion to the didactic article
document type.

1. “~”: Non-breaking interword space.
Escape: \tld;.24

Equivalent: \nbs;, cf. &nbsp; in HTML.

2. “^”: Superscript command.
Escape: \crt; .
Equivalent: \sup or, in math, \msup .

3. “ ”: Subscript command.
Escape: \ or \und; .
Equivalent: \sub or, in math, \msub .

23In math ‘[’ sometimes needs to be escaped to prevent confusion between its markup use and its ordinary
use in an instance such as the markup for Z[t]. The syntactic translator would need to know vocabulary — at
least the argument/option pattern for mathbb — in order to elude the syntactic ambiguity.

24“\~” is an example of a markup string that is defined in LATEX (for an accent) that is not defined in the
didactic document type. A LATEX user may recover a prior markup habit of this type using newcommand
possibly in combination with macro. For more information see the discussion of accents (section 5.8).

16



4. “&”: Dual use: tabular cells and entity introducer.
Escape: \& or \amp; .
‘&’ introduces an entity reference if it is followed by anything other than white space. It
is used, as in LATEX, as a tabular cell delineator when it is followed by white space.

5. “$”: Toggle inline math mode.
Escape: \$ or \dol; .
Equivalent: “\tmath{ . . . }”.
Nearly equivalent: “\( . . . \)” or “\math{ . . . }”.25

5.2.3 Certain strings

These are strings of plain text with markup significance in the didactic document type that are
part of markup in LATEX.

1. “--”
Short dash as used with a range of numbers, e.g., 1–2.
Equivalent: \rdash; .

2. “---”
Long dash as used for punctuation, e.g., a dash — like this.
Equivalent: \pdash; .

3. “\ ”
Blank interword space.
Equivalent: \spc; .

4. “\,”
Small horizontal space.
Equivalent: \hsp; .

5. “\\”
Forced line break.
"\\" may be used at the end of a line of input for a forced line break. In a tabular
environment (with the didactic article document type, as in LATEX) it begins a new tabular
row. Any other use is deprecated, and will result in translation to the defined-empty
element bsl corresponding to the ASCII character ‘\’ with a warning from the syntactic
translator.
Equivalents: \brk; for a line break outside of a tabular environment.26

6. Blank line.
Begin new paragraph command.
Equivalent: \parb . Nearly equivalent: \par .

25It is possible to merge the inline math and tmath zones at any level of processing beyond the syntactic
translator. These are indeed the same in LATEX, but the syntactic translator resists the temptation here to go
beyond syntax and merge them. With the didactic article document type the formatting to LATEX inserts the
LATEX markup "\," for a small horizontal space before and after math, but not before and after tmath.

26The syntactic translator simply outputs the SGML defined-empty element brk0, which belongs to its reserved
name space. The dual use of brk0 involves some SGML chicanery that is resolved during translation to the
XML version of the article document type, where tabular is converted to table and non-tabular use of brk0 is
converted to brk. See also the handling of array, which is different even though the source markup, as in LATEX
is similar.

17



7. “‘‘”
Left (double) quotation mark.
Equivalent: \ldq; .

8. “’’”
Right (double) quotation mark.
Equivalent: \rdq; .

9. “\(”
Begin math mode command.
Equivalent: \begin{math} .

10. “\)”
End math mode command.
Equivalent: \end{math} .

11. “\[”
Begin displaymath mode command.
Equivalent: \begin{displaymath} .

12. “\]”
End displaymath mode command.
Equivalent: \end{displaymath} .

13. “. ”, “? ”, “! ”
End-of-sentence marks.
Equivalent: \eos;, \eoq;, \eoe; .
A period followed either by two blank spaces or by a newline is recorded as an end of
sentence. There is similar provision for the question mark and the exclamation point.
These tagged forms may be used explicitly for the corresponding punctuation inside math
displays to distinguish punctuation from mathematical use of the punctuation symbols.
Explicit markup for a comma is “\cma;”.27

5.3 Large Structure

Overall an article consists of a preamble followed by a body. As noted previously (section 3.3)
advanced mode provides a special form of usage

\begin{document} . . . \end{document}

with the paired metacommands begin and end that with an article delimit its body. This is
enabled with the gellmu-trans call for the syntactic translator, and, consistent with regular
LATEX usage the preamble is present without explicit tagging.

The only required markup in a preamble is a title, and it is formally correct for its content to
be empty. The SGML content model for a body is somewhat loose, but is usually understood
to consist of sections and may contain ordinary paragraphs (par, which must be marked up
explicitly, or parb, which is begun with a blank line). Although a body may be entirely empty

27Alternate forms “\aos;”, “\aoq;”, “\aoe;” of sentence ending punctuation are provided that may be used
following inline mathematical markup at the end of a sentence. Similarly, “\aoc;” is an alternate form for a
comma.

18



(likely not useful) or may consist only of par and parb elements, all inline text must be within
one of these basic paragraph containers.

For example this formally correct textless document is handled without noise by the didactic
production system:

\documenttype{article}
\title{}
\begin{document}\end{document}

while the following document with text outside of a paragraph fails initial validation in the
didactic production system:

\documenttype{article}
\title{}
\begin{document}
x
\end{document}

The error may be corrected by placing a blank line before the character ‘x’.

The content model for preamble is tighter than that for body. This makes it possible to have
a greater level of error-checking than would otherwise be possible. For example, a preamble
must have exactly one title although it is not specified where in the preamble a title might
be. There may be at most one of each of the elements surtitle, subtitle, and date. Although
newcommand, which is a metacommand, does not affect the document type definition and may
be used at different locations in the preamble, the small number of actual elements that may
be multiply used in the preamble, such as mathsym (which is partly a metacommand) must be
located together.

5.4 Sectioning

In classical LATEX one writes simply

\section{Some title for a section}

to begin a new section. While this markup specifically delineates the section title, LATEX
understands that a section has begun. The section command has an option whose content is
an alternate title for the table of contents, and the starred form of the command suppresses an
otherwise automatic section number.

With SGML the classical approach is something along the following lines:

<section><sectiontitle>Some title for a section</sectiontitle>
<para> A paragraph.
<para> Another paragraph.

. . .
</section>

Basic GELLMU markup corresponding to this would be:28

28Or one could use:
\Section{\sectiontitle{Some...}

19



\begin{section}\sectiontitle{Some title for a section}
\para A paragraph.
\para Another paragraph.

. . .
\end{section}

If, moreover, the markup is to be well-formed XML markup, then each para tag would need
explicit closure with </para>.

The main point here is that the open and close tags for a section in a classical SGML document
type encompass the whole contents of a section, and separate markup is required for the section
title.29

The didactic SGML document type under advanced GELLMU seeks to model classical LATEX
as closely as possible in order to provide a bridge for authors from LATEX to SGML (and,
indeed, XML). For this reason a command section similar to the classical LATEX command
that delineates a section title is provided in the didactic SGML document type. At the same
time this document type has a whole section container Section (upper case S ) that in the
simplest case consists of a shead container for its title (or header) followed by any number of
paragraphs. The XML form of the didactic document type supports only this latter tag, which
means that the translation script that converts SGML to XML has an unambiguous way of
performing the conversion from section to Section provided that the author’s source leads to
an SGML instance which is valid30 under the didactic document type.

5.5 Labels, References, and Anchors

A label command may be placed anywhere that text may be placed in order to mark a location
and associate a symbolic “key” with that location. A ref command may be placed anywhere
that text may be placed to generate a visible allusion called its reference value, for example a
section number, to the location associated with a label key. An anch command may be placed
anywhere that text may be placed to provide a hypertext reference either by key to an internal
location or by uniform resource identifier (URI) to an external resource.

At this point the discussion will become descriptive of of the entire didactic production system
rather than simply of its document type.

5.5.1 Labels and Sequencing

The basic usage for label is

\label[:series=" series-name " serseq=" number " refkey=" ref-key ”]{ key }

\para A para... . . .}
instead of using the environment-like begin/end construction.

29In fact, classical SGML document types are often even more elaborate than this.
30Caveats:

No document type definition under SGML is actually a complete language definition. A document type
definition describes a document markup structurally; in particular, it does not provide definition for legal
“field” values.
While the GELLMU syntactic translator is now considered as “alpha” software, the document type and
the accompanying translators, which constitute the didactic production system are developmental. These
materials have some support for obsolete practice and also contain sketch sections that are not fully robust.

20



where use of the attributes is optional and, moreover, the required key may be empty, i.e., the
markup \label{} is permitted. The key must be a case-sensitive string that is monocase
unique.31 The didactic production system will provide a unique automatically generated string
value for key if none is provided by the author; this can be useful if a series name is specified
as an attribute for the label.

An author should never reference a label key not provided by the author, but the empty element
popkey is intended for processing evaluation as the last label key, automatic or not, preceding
its location.

Sequencing32 may be handled under the GELLMU didactic article document type using labels
and references. Toward this end one makes use of three SGML attributes that are provided
with the label tag:

series The value is the name of a sequenced family of labels. A label may belong to at most
one family, but there may be multiple labels at the same location. There is no default
value of series.

serseq The value is the sequence number of the label in its series if a series is defined. It is
meaningless if no series is specified for the label.

refkey The name of a label key from which to spawn an automatically generated value for the
attribute serseq of the current label.

Every label has a reference value that is normally accessed with the ref command. This results
in the creation, when the XML version is generated, of an XML entity reference with name
based on the reference’s key argument, that matches a CDATA entity definition at the top of
the XML document. The use of indirection provided by this entity technique means that it is
immaterial whether the reference is forward or backward.

The evalref command gives access to the literal value of a reference without indirection, and
places that value as a literal in the XML version of an article. Thus, evalref is the name of
a tag only in the SGML document type and in the author-level XML document type but not
in the elaborated XML document type. An evalref invocation will be successful only with a
backward reference. This is extremely useful for managing non-default numbering of sectional
units. For ordinary label references its use is undesirable even though it is possible for backward
references.

The reference value of a label is determined as follows:

1. Basic reference values are positive integers. Upper and lower case alphabetic values
and upper and lower case roman numeral values may be obtained by applying the series
command (not to be confused with the series attribute for the label command) to a basic
reference value with type attribute of series set to one of ‘A’, ‘a’, ‘I’, or ‘i’.

2. If the label is assigned to a label series and is given a refkey attribute, then the reference
value of the label is the reference value of the label referenced by the key that is the value

31It is recommended that the characters in label key strings be restricted to lower case ASCII letters, the
digits 0–9, and possibly the character ‘-’ or the character ‘.’ for maximal inter-operability with current and
future formattings. For example, the ‘ ’ is problematical in this context.

32Although one could provide SGML modeling for LATEX’s counters, it would not be very much along the lines
of main track SGML or XML document types.

21



of the refkey. (This mechanism is used to re-start the sequencing of the sectional unit
id’s at the end of this document.)

3. Else if the label is assigned to a label series and the author supplies an explicit literal
numeric value for the serseq attribute, then the value of serseq is its reference value.
(Markup — in particular, evalref — cannot be used in defining an attribute value.)

4. Else if the label is assigned to a label series, the reference value of the label is the next
(positive integer) value for a label in that series. (This mechanism is used to control
the sectional id of the last section of this document. It may also be used to run parallel
interleaved sequences of sectional units, such as, for example, questions and answers,
within a document.)

5. Else the reference value of the label is the sectional unit identifier, i.e., its sunit value
rather than the logical value in its attribute sid, of the smallest sectional unit containing
the label. These values may not be numeric. For example the string “A.3.2” might
be a sectional unit identifier. The series command should not be used to express type
conversion of a reference value that might resolve as a sectional unit identifier.

5.5.2 Anchors

The basic usage for anch is

\anch[ reference specs ]{ anchored text }

where the option, which is not an attribute option but rather becomes the element anchref in
XML (while the anchor’s argument — its “presented content” — becomes anchv), is expected
to contain white space separated strings of the form name="value"33 with name restricted to
one of the following:

fref

A footnote reference. Value is a string that becomes the content of an automatically
created footnote to the text in anchv. This usage is deprecated; use \footnote instead.

href

A web reference as with href in HTML. That is, value is a URI. It could be of the form
"#labelkey" where "labelkey" is the name of a label key that is preferably and more
easily used with iref. (The ‘#’ needs to be escaped, i.e., marked up as "\#".) In a non
hypertext formatting the URI may be presented as a note or footnote associated with the
text in anchv.

Href

Same as href except that the author wishes to suppress any note or footnote presentation
of the URI. This might be the case if, for example, the URI might be obviously deducible
from the anchv content.

33The value strings may contain simple markup such as, for example, “\tld;” to provide robust multiple
output processing of ‘~’ whereas an attribute option may not contain markup.

22



iref

An internal reference; value must be a label key arising from label or klabel34.

Note also that there is a command urlanch (probably should have been urianch), taking a single
argument, used for URIs, which is intended to have the same effect as a newcommand with one
argument for creating a web anchor with the URI as presented content.

5.5.3 Example Emulating a LATEX Counter

Suppose that one wants to fashion an inline enumerated list at some point in a document. An
enumerate environment is a list structure that, while it may occur in a paragraph, is not inline.
The idea is to give each item a label and fashion the inline list item number by referencing that
label. One writes a newcommand to ease this.

The name of a LATEX counter is emulated with the name of the series attribute for one or more
labels. Unless one wishes to be able to reference the items apart from the immediate reference,
one need not provide a label key. The didactic production system will provide a default labelkey
and the command “\popkey”, which grabs the key of the last preceding label, may be used to
furnish the key for the immediate reference. If one wants small Roman numerals, one wraps
the “\ref” command in a “\series” command. Since series requires an actual number, one
must use evalref instead of ref, which is permitted so long as the reference follows the label.
Here’s the markup:

\label[:series="foo" serseq="0"]{} % zero the counter named foo
\newcommand{\ti}{%
\label[:series="foo"]{}(\series[:type="i"]{\evalref{\popkey}})}
Hilbert’s three most important contributions to algebraic geometry
are \ti~the basis theorem, \ti~the nullstellensatz, and \ti~the syzygy
theorem.

The rendering is this: Hilbert’s three most important contributions to algebraic geometry are
(i) the basis theorem, (ii) the nullstellensatz, and (iii) the syzygy theorem.

With the current didactic production system if one had used “\ref” instead of “evalref”, the
translator from author-level XML to elaborated XML, which resolves references, would have
issued a warning in the scroll, but the build would have run to otherwise successful completion
by ignoring the presence of the series command.

5.6 General Usage for Sectional Units

This describes the content model in the GELLMU didactic document type for the “whole”
sectional units Section, Subsection, . . . as fully tagged.

5.6.1 The Content Model

The content model for sectional units is:
34A klabel is a “visible key” label.

23



((sopt)?,(sprefix)?,(sunit)?,(shead),(%UnitContent)*)

where:

%UnitContent

refers to the subsections, loose paragraphs, and other general content that is allowed inside
a section.

shead

is the required35 section header or title.

sopt

is an optional title for use in the table of contents36.

sprefix

is optional markup for text that is to precede the sectional unit sequence notation. For
example, if the sectional unit sequence is “B” and sprefix is the markup string "Appendix
" (ending with a blank space), then the visible indicator for the sectional unit, when
consistent with the setting of secnumdepth, is “Appendix B” both at the beginning of the
section and in the table of contents. Or if the sequence is “3” and the sprefix is “A”,
then the visible indicator is “A3”.

sunit

is an optional setting for the sectional unit sequence. The GELLMU didactic document
type has an attribute “sid” for the sectional units Section, Subsection, . . . that is optional
(and rare for author usage) in the SGML version but required in the XML version.
The translator from SGML to XML computes it in the standard way. For example
subsubsection 1 of subsection 3 in section 2 acquires the sid “2.3.1”. It is expected that
formatters will use this value for the visible sectional unit indicator, preceded, as previously
described, by any sprefix, unless the user provides sunit. While sunit is intended to
override the visible indicator, it is not provided to override the sid attribute itself which
a formatter should see as describing logical structure.

5.6.2 The LATEX-Like Form of General Usage

Corresponding LATEX-like argument/option syntax can be used, as previously indicated, in
GELLMU source with section, subsection, . . . . If, however, argument/option syntax is used,
one must be mindful of the ordering of the options, and use empty option brackets, as necessary,
to indicate the position in the sequence of an option with content. For example, a sole option
is understood as sopt, the version of the sectional unit title to be used in the table of contents.
To provide only sprefix with argument/option syntax one precedes the bracket sequence for
sprefix with an empty pair "[]" of option brackets37 for sopt.

35It may be left empty, but it must be present.
36The presence of sopt does not cause a table of contents to be produced automatically. For that one

uses "\tableofcontents". Moreover, the presence of sopt should have no effect upon a manually constructed
"\TableOfContents".

37The didactic production system offers a way to furnish a formally empty string, which is an empty element
called empty in the document type for use in places such as the the table of contents option of a sectional unit,
where it is not otherwise possible to distinguish after parsing whether deliberately empty content was specified
by the author. That is, the markup "\sopt{}" furnishes an empty string which, in turn, signals “no sopt”,
while "\sopt{\empty;}" indicates that empty content was specified for sopt.

24



5.7 verbatim, verblist, and manmac

The ordinary notion of “verbatim” is complicated in the context of a document type that is
intended for processing toward multiple output formats. There is no special provision for
verbatim markup under basic GELLMU38, but there are two layers, one simplistic and one
sophisticated, in the didactic production system with each layer having provision for both
inline and block-level verbatim markup.

The simplistic approach involves the provision of an inline element verb and a block-level element
verbatim in the didactic document type. With these the author is responsible for entering special
characters in ways that are safe for input source notation, safe for syntactic translator output,
and safe for each output format that is envisioned.39 In the simplistic layer the formatting
program in the didactic production system for HTML output renders verb as an HTML kbd
element and verbatim as an HTML pre element. In formatting for regular LATEX output each
of these SGML elements is rendered as its LATEX namesake. Neither the pre element in HTML
nor the (basic) verbatim command in LATEX is context-sensitive, and typically are formatted
with left margin justification.

The sophisticated layer in the syntactic translator for verbatim is enabled by setting the variable
gellmu-verbatim-clean true. If this is the case, then a user should input verbatim material
literally between \begin{verbatim} and \end{verbatim} markers occupying whole lines and
the syntactic translator will convert each of the 33 non-alphanumeric printable ASCII characters
therein to the corresponding empty element in the didactic document type, and render each line
of the converted material as a list item bearing the item name nln in a list element verblist.40

Similar arrangements pertain to the sophisticated inline analogue of verb, which is enabled in
the syntactic translator by setting the variable gellmu-manmac-bar-name to a non-empty string
value that is to become the name of the element, such as quostr, to contain the content, which
should be delimited in source by successive ‘|’ characters. By default the user must enter a
verbatim string in “safe” form, but may enter it, apart from any occurrence of the character
‘|’, literally if the variable gellmu-manmac-literal is true. The term “manmac” is derived
from an old plain TEX package for writing documentation by that name in which the character
‘|’ is used to delimit inline literal material for verbatim presentation. Moreover, consistent
with usage observed in LATEX documentation markup of the form

\name|literal-text|

is translated by the syntactic translator to an element named as with simple "|...|" having
a setting for its attribute with name the value of the string variable gellmu-manmac-attribute,
which for quostr in the didactic document type would appropriately be its attribute inv.

Variable settings to provide for the use of literal input both for verbatim as a metacommand
front for the list element verblist and manmac configuration for the element quostr, as described,
are default when the syntactic translator is begun with the non-default function gellmu-latex-
faq. This function also sets the variable gellmu-squophrase-name, which otherwise defaults to
the empty string, to the value "squophrase". This causes the syntactic translator to attempt

38When editing for HTML one may, of course use HTML’s pre, which stands for “pre-formatted text”
39With a sufficiently long list of output format candidates each of the 33 non-alphanumeric printable ASCII

characters is unsafe. However, one might use an external character-to-string conversion program to prepare a
large amount of verbatim material for inclusion inside the simplistic verbatim command in GELLMU source.

40To export this procedure for general advanced mode usage, all of the names used need to be made user-
configurable.

25



to interpret balancing character pairs consisting of the character ‘‘’ and the character ‘’’
as delimiters for the element squophrase, an alternate form along with quophrase, for “quoted
phrase”, with odd instances of the character ‘’’ set as the empty element apos, which represents
an apostrophe.

5.8 Accents

Traditional LATEX markup employs accent commands for modifying ASCII characters in order
to produce non-ASCII characters. On the other hand characters from 16 “byte-planes” of
Unicode are now available in HTML and XML as ordinary characters, with treatment as the
atoms of ordinary strings of text not requiring any special attention or notice from the viewpoint
of markup. It may happen that this will affect development in the LATEX project, and it is,
therefore, unclear what the long term role might be of LATEX’s accent commands.

Nonetheless, the didactic document type provides element names corresponding to the 14 clas-
sical LATEX accents although it does not provide classical markup notations such as "\’", "\"",
"\~", . . . inasmuch as names are required in syntactic translator output.41 The names for
the accents may be seen by locating the word “accent” in the didactic production system file
gellmu.dtd and reading the following 14 lines.

An author, particularly an author residing in an English language locale, may introduce, for
example, the character é in several ways:

1. by using an algorithmic accent command — in this case \acute{e}: é.

2. by direct Unicode-based entity reference – in this case &#xE9;: é.

3. by simple direct entry of the Unicode point in a file having the UTF-8 text encoding.

Note that Unicode values are numbers represented in hexadecimal notation (base 16); the digits
are 0–9 and A–F. Thus, E9 is 233, and one could also use the entity reference &#233;.

While for the long term, the largely equivalent42 second or third methods are superior, there
are caveats for their use in 2007:

• One’s LATEX back end must have a suitably robust way of handling Unicode, presumably
via the inputenc package or possibly via Omega/Lambda.

• Even when fonts are available, some web browsers seem only to handle Unicode via entity
references.

5.9 Tabular Environment Emulation

At this point (2006-7) the didactic document type is able to accomodate emulation of LATEX’s
tabular environment with "l", "c", "r", and "p" column cell specifiers with, where robust CSS
support is available for HTML, "|" indicators for vertical cell rules and "\hline" commands

41Familiar short forms may be introduced by a user using the macro facility.
42For the third method one’s GELLMU driver script must provide appropriately for the text encoding of the

source file.

26



for horizontal rules between rows. While multicol, and multirow are not modeled, cells may
contain other tabulars recursively.

A "p" column specifier optionally takes a decimal argument that represents the fraction of
available width to be made available for the cells in that column. When is no fractional width
specifier, the default fractional width is 1

n+1 where n is the total of number of columns.

What may be viewed as a shortcoming of the tabular emulation is that in each tabular row the
first cell must contain some markup in order for the document to be structurally correct. This
arises from a rule associated with SGML document types that might be overcome if GELLMU
source were processed by a monolithic program. Instead, however, it is an assemby of separate
components (appendix 7.5.2) in which the first stage has knowledge of syntax but not of the
markup vocabulary.

One thing to keep in mind with tabular is that in the current, though probably not future,
design of HTML tables are not allowed in paragraph content. The didactic production system
works hard to deal with this. In most web browsers there will be a line break before an HTML
table and again after an HTML table. (One way to finesse that is to place a table in a cell in
a sur-table, which is abuse of markup.) This author generally places a tabular inside a display,
which is the GELLMU object corresponding to LATEX’s center.

The document type does not offer “floating” objects, and, therefore, the name table is not used
as as in LATEX.

The name table is used for emulation in regular GELLMU source of HTML tables. A table, like
a tabular, takes a required argument consisting of column specifiers. In the didactic production
system at the point where an article is spun to the elaborated XML version of article, there is
no longer a distinction between tabular and table.

There is also array, which, as in LATEX, is the in-math version of tabular, except that in GELL-
MU its emulation of LATEX’s array survives translation to the XML version of article. An
array has only "l", "r", and "c" cells.

Example: The markup for the table of DTD’s in Appendix B.2.2 is this:

\begin{display}
\begin{tabular}{l|cc}
~ & Latin-1 & \abbr{UTF-8} \\
\hline
First stage \abbr{SGML} & \quostr{gellmu.dtd} & \quostr{ugellmu.dtd} \\
Author Level \abbr{XML} & ~ & \quostr{axgellmu.dtd} \\
Elaborated \abbr{XML} & \quostr{xgellmu.dtd} & \quostr{uxgellmu.dtd}
\end{tabular}
\end{display}

Because the one horizontal divider and the one vertical divider rely on CSS support in HTML,
these dividers might not be seen in a web browser with weak CSS support.

5.10 Graphic Inclusions

There is basic support for graphics inclusions suitable for the HTML backend and the LATEX
backend with both DVI and PDF outputs. The arrangements are not unlike those required
for the use of the includegraphics command provided by LATEX’s graphicx package. This means

27



that, apart from the didactic production system’s chain of processors, one needs to provide
several different versions of a given graphic object in order to accommodate the needs of the three
different output formats (HTML, PDF, and DVI). A reliable graphics format converter such
as that provided by ImageMagick (http://www.imagemagick.org/) or the netpbm utilities
(http://netpbm.sourceforge.net/) and a broad TEX support environment similar to that
provided by TUG’s TeXLive43 are essential for work with included graphics.

For example, if one begins with an encapsulated PostScript image glmy.eps made, say, with
Metapost, then one might run the commands

epstopdf glmy.eps
convert glmy.pdf glmy.png

before making PDF with pdflatex and PNG (for inclusion in HTML). In this case the PDF
version of the graphic should be regarded as best for use with pdflatex, and so one wants to have
the PNG version out of view from pdflatex when building the GELLMU source glman.glm
for this document. With the new mmkg drivers one may prepare a tiny file glman.prx that is
a list of names of image files, one file per line, that should be out of view at the point in the
pipeline when pdflatex is active. Thus, a line in the file glman.prx should contain the name
glmy.png.

In glman.glm one has the code:

\begin{quotation}
Sometimes a picture is worth a thousand words.
\display[:frame="1.1"]{\includegraphics[:scale="0.2"]{glmy}}

\end{quotation}

which yields:

Sometimes a picture is worth a thousand words.

In this markup one sees, first of all, two uses of SGML attributes — frame and scale. Attribute
options are opened with "[:" rather than simply with "[". Whereas options generally may
contain markup, attribute options may not.

The meaning in this example of scale is that the width of the graphic in DVI and PDF
outputs will be the result of multiplying the scale by LATEX’s value of \textwidth.44 The HTML
formatter will link to the PNG without a width specification. Thus, the brower window width
of the graphic will be the actual width of the PNG image unless, perhaps, it’s too large for
the browser’s window. The meaning of frame is that for print outputs the graphic image
will be surrounded by a LATEX framebox with diameter that is 1.1 times the diameter of the

43URI: http://www.tug.org/texlive/
44This meaning of scale differs from the meaning of scale with includegraphics under LATEX’s graphicx package.

New controls of this type may be introduced in a future version.

28



display ’s content. In the current HTML formatter no use is made of the numeric value of
frame although a default frame is constructed via an HTML attribute giving values for the
CSS properties border and padding. When image framing is desired, another approach is to
incorporate framing in the graphic itself.

6 Mathematics in article

6.1 General

There was previous mention of the basic mathematical container element tmath in the discussion
of single string (section 5.2.2) markup and the math and displaymath elements in the discussion
of certain strings (section 5.2.3) of special markup significance.

The markup used inside these containers is very similar to that which is used in LATEX although
far from all of LATEX’s math markup, as extended by the amsmath package, has any analogue
in the didactic production system.

There are a few things that deserve short mention:

\sum, \int, and \prod

are all similar to their LATEX namesakes except that each requires explicit closure. For
example,

\[ \sum {0}^{\infty} \frac{x^k}{k!} \sum: \]

produces
∞∑
0

xk

k!
.

\regch, \mbox, and \text

The didactic document type provides regch, for “regular character” that is a one character
version of mbox provided for separating from general mbox matter the content to which
a non-math algorithmic accent (section 5.8), may be applied. For example,

\newcommand{\Q}{\regch{\bold{Q}}} % intended for use in math
\newcommand{\galQ}{\mbox{Gal}(\ovbar{\Q}/\Q)} % only in math
$\galQ$\aos;

produces Gal(Q̄/Q).

Both regch and mbox should be used only for symbols. Note that “Gal” in the foregoing is
a symbol. The command \text is provided for the use of text phrases – usually conjunctive
in nature – inside math zones. For example, the markup

\[ \absval{x} = \lbalbr{\begin{array}{rl}
x & \text{\ if\ } x \geq 0 \\

-x & \text{\ if\ } x < 0
\end{array}} \]

produces

|x| =
{

x if x ≥ 0
− x if x < 0

29



In this example note that the command name lbalbr stands for “left balanced brace”. It
corresponds to the use of \left\{ ... \right. in LATEX45.

\aos;, \aoc; \aoq;, and \aoe;

are the named forms of the LATEX space adjustment commands "\@.", "\@,", "\@?", and
"\@!", which provide correct placement of inline punctuation immediately following inline
mathematical markup. There is now also default provision in the didactic production
system for the more LATEX-like "\@" usage. Note that the use of \@ is seldom necessary.

6.2 Assertions: Near Emulation of LATEX’s Theorem-Like Environ-
ments

6.2.1 Examples

The container element \assertion is used in the didactic document type for the creation of
its analogue under SGML of theorem-like environments. As a first example of the near em-
ulation of a LATEX theorem-like environment, here is markup to give LATEX-like meaning to
“\begin{theorem}” and “\end{theorem}”.

\newcommand{\begin{thm}}[1][]{%
\begin{assertion}[#1][theorem]{Theorem}[\evalref{\popkey}]}
\newcommand{\end{thm}}{\end{assertion}}

For a first instance it is invoked without supplying the optional first argument, which is for a
label key.

Theorem 1. The continued fraction expansion of a real number is finite if and only if the real
number is a rational number.

This is just text to follow the statement of a theorem.

If we do the same thing again, the theorem number should go up by 1 since in the didactic
production system this usage is equivalent to using the default counter associated with a label
series name theorem.46

Theorem 2. The continued fraction expansion of a rational number is eventually periodic if
and only if the real number is an irrational number that is the root of some quadratic polynomial
with rational coefficients.

6.2.2 Usage for assertion

The general usage of assertion is the following:

\begin{assertion}[key][series ]{name}[id]
. . .

45Note that the use of lbalbr in this instance is insufficiently semantic for translation to content MathML while
it is meaningful for translation to presentation MathML. Adequate enhancement might be had by providing
mml="cases" (using a name from amsmath) as an attribute for lbalbr with this example.

46There is also a default counter that is used when no label series name is present. That counter simply is
the position of the underlying assertion in the list of all assertions.

30



\end{assertion}

The options key and series represent the same things as the corresponding label (section 5.5.1)
options. The id option is for explicit customization of the visible identifier, e.g., theorem
number, as illustrated with one of the examples later in this section. One may use the id
option, which must follow the name argument, without using either of the other options. But
in order to use the series option, a key option, which may simply be empty, must be present.

There is also a fully named way to proceed:

\begin{assertion}
\asstkey{. . .}\asstser{. . .}\asstname{. . .}\asstid{. . .}

. . .
\end{assertion}

Here order is important, but any of the options may simply be omitted. For example, we may
write

\newcommand{\begin{Thm}}[1]{%
\begin{assertion}\asstser{#1}\asstname{Theorem}%
\asstid{\sref;.\evalref{\popkey}}%
}
\newcommand{\end{Thm}}{\end{assertion}}
\begin{Thm}{XXseries}
If $[ n 1, n 2, \ldots ]$ is an infinite continued fraction, then
its sequence of convergents always has a limit.
\end{Thm}

to obtain:

Theorem 6.2.2.1. If [n1, n2, . . . ] is an infinite continued fraction, then its sequence of conver-
gents always has a limit.

Notice that the asstid argument is merging the reference value for (the new) series XXseries
with the visible id of the current sectional unit.

6.3 Equations and Equation Arrays

The general usage for equation is the following:

\begin{equation}[key][series]
. . .

\end{equation}

The options key and series represent the same things as the corresponding label (section 5.5.1)
options. In order to use the series option, a key option, which may simply be empty, must be
present. The use of “equation*” as a name for an equation display that is not numbered is
not permitted, but one may instead use the nonum attribute as follows:

\begin{equation}[:nonum="true"] . . . \end{equation} .

General usage for an equation array (name eqnarray) is:

31



\begin{eqnarray}[key][series]
. . .

\end{eqnarray}

where the content is an eqnabody consisting of eqnrow ’s, each row may be terminated in LATEX-
like markup, as in LATEX, with the string “\\” and consists of three parts, corresponding to
elements eqnleft, eqncenter, and eqnright, that may be separated in LATEX-like markup with the
character ‘&’.

Support for numbering in eqnarrays is only minimally developed although there is suggestive
sketching in the didactic document type that is not supported in the formatters. By default the
equations in equation arrays are numbered consecutively throughout an article. This behavior
can be altered by using the series attribute of an eqnarray. If that is done, then, as things have
been sketched, numbering applies to whole arrays rather than to the equations within arrays.
Numbering in an equation array may be suppressed by setting its attribute nonum to the string
“true”.

6.4 The \mathsym Metacommand

mathsym is a macro substitution metacommand that is available in the didactic production
system for enabling an author to declare that a macro name represents a mathematical symbol.
It is a formal way of recording statements commonly made by authors in introducing notation.

Unlike regular metacommands, which may appear at any point in GELLMU source, mathsym
may only appear in the preamble of an article, or, equivalently with defaults in the syntactic
translator, mathsym may only appear before the LATEX-like "\begin{document}".

Its usage is:

\mathsym{ symbol-name }{ symbol-rendering }[symbol-meta-info ] .

Here symbol-name is an alphanumeric string (case-sensitive) beginning with a letter. The
second argument is the presentation rendering of the symbol in GELLMU markup. It is like
the definition of a newcommand except that it may not involve arguments.47 The optional third
argument symbol-meta-info is an alpha-numeric string that might also include possibly a few
other string characters such as ‘/’, ‘-’, ‘,’, ‘.’, ‘*’, etc. Its exact structure depends on the
typing system. (No typing system is part of the didactic production system.) For example, it
might consist of (name, value) pairs for conveying meta-information about the symbol.

The syntactic translator replaces each invocation of a given mathsym with the specified render-
ing and writes for each mathsym definition a corresponding element in the SGML output whose
content consists solely of the declared symbol name if there is no meta information but other-
wise consists of the symbol name followed by a blank space and then whatever string of meta
information is provided in the optional argument. Additionally, each invocation is wrapped
in a rendering-inert Sym element whose key attribute reveals the name given to the symbol
at the point of declaration (and by which the symbol is invoked). This makes it possible for
a downstream authoring platform processor that has remembered the list of declared symbol
names to match each invocation of a declared symbol with its associated meta information, if
any, provided by the author in the symbol declaration.

47However, a declared math symbol may be invoked in a newcommand that takes arguments.

32



A related feature in the didactic GELLMU document type is the mlg tag for marking math-
ematical logical groups. This is somewhat akin to the lgg tag for TEX-like logical groups,
traditionally created in TEX markup with braces that are not attached to a command.48 As
with lgg there is no obvious evidence of an mlg tag in a typeset rendering, but the presence
of such a tag is intended as a signal to downstream mathematical parsers that the contents of
the tag be given grouping priority as, say, with visible parentheses. Furthermore, the mtype
and mml attributes of the mlg tag may be used to pass semantic information about the tag’s
contents to a processor.

7 The Didactic Production System

The didactic production system is the suite of processors and technical support files underlying
what is called regular GELLMU.

7.1 Permission

The items of the didactic production system are copyrighted free software released under the
GNU General Public License49.

7.2 Materials

The release contains everything originating with the author that is currently used in “building”
GELLMU documents.

It also contains a slightly modified version50 of David Megginson’s Perl module "SGMLS.pm"
based on another slightly modified version that was furnished to me by Dave Holden in a
very quick early 1999 response to my posted request for a modification that handles the labels
provided (optionally) by nsgmls for SGML elements that are defined empty. A similar slight
modification was also supplied a few days later by Vassilii Kachaturov and had been available
at his web site.

Although the materials offered in this package aside from the syntactic translator pertain only
to the didactic document type and the didactic production system, it should be understood that
the larger design for GELLMU envisions other parties, on the one hand, building in various
ways to extend the functionality of the didactic system, and, on the other hand, applying the
methods of the didactic system to other document types and other formatting programs for
those document types.

The basic items originating with the author, aside from the document type definition files
(section B.2.2) are:

gellmu.el 51 the GELLMU syntactic translator, which makes SGML

48Such unattached braces in GELLMU markup lead to an lg0 tag in the output of the syntactic translator
that is translated to an lgg tag in the XML version of the didactic document type.

49URI: http://www.gnu.org/copyleft/
50URI: ../perllib/SGMLS.pm
51URI: ../gellmu.el

33



xplaingart.pl 52 converts SGML to author-level XML

xmlgart.pl 53 converts author-level XML to elaborated XML

ltxgart.pl 54 translates elaborated XML to LATEX

htmlgart.pl 55 translates elaborated XML to classical HTML and translates specially pre-
pared XML to XHTML+MathML

mathcdata.pl 56 first of two special preparations for translation toward XHTML+MathML

mathprep.pl 57 second of two special preparations for translation toward XHTML+MathML

mval.pl 58 check for certain types of MathML errors

Since some users will only be interested in the syntactic translator, additional description of
these materials is found below in “Using the didactic production system” (section 7.5) and in
the Release Notes (appendix B).

7.3 Other Required Software

To make use of the GELLMU syntactic translator a user must have or separately acquire
Emacs59.60 (“Windows” users should look at the special FAQ61.) Emacs is commonly found
on GNU/Linux systems and on *ix systems. It may be found on other systems when provided
by system managers.62

To make use of the didactic production system beyond the syntactic translator a user must have
or acquire the following items of free cross-platform software

• an ESIS generating SGML parser such as found in the cross-platform package SP63 by
James Clark, which has stood the test of years, or the newer variant OpenSP64, which is
internationalized, from the OpenJade Team.

• Perl at CPAN65.
52URI: ../xplaingart.pl
53URI: ../xmlgart.pl
54URI: ../ltxgart.pl
55URI: ../htmlgart.pl
56URI: ../mathcdata.pl
57URI: ../mathprep.pl
58URI: ../mval.pl
59URI: http://www.gnu.org/software/emacs/
60Version 20 or later should be adequate. Although the author began this project using version 19, he is no

longer able to run tests with that version.
61URI: http://www.gnu.org/software/emacs/windows
62It is an embarrassment of the business world in the years since 1985 that many business computing installa-

tions do not provide general purpose cross-platform programming systems despite the widespread availability of
excellent free robust systems such as Emacs (for Lisp), gcc (for C), and Perl. This new phenomenon apparently
arises not so much from lack of organizational interest but from the fact that the responsibility for maintenance
cannot be passed beyond the local system manager to a vendor.

63URI: http://www.jclark.com/sp/
64URI: http://openjade.sourceforge.net/
65URI: http://www.cpan.org/

34



• a complete TEX system, for which one may look to The TEX Users Group (TUG)66 or
The Comprehensive TEX Archive Network (CTAN67).

• xmlwf — a basic utility that is part of the release of James Clark’s expat68.

7.4 Using the syntactic translator

This explains how to use the syntactic translator, which is the Emacs Lisp program contained
in the file gellmu.el69.

7.4.1 Operation in Batch Mode

For linux and the other *ix a script like bin/linux/g2s70 will be adequate if your working
directory is the distribution directory71.

Usage: g2s stem-name [ function-call ]

For example, if "foo.glm" is the name of the source file, then the first argument should be
"foo". The optional second argument function-call is the name of the function in the Emacs
Lisp package "gellmu.el" that is to be used. The function call defaults to "gellmu-trans",
which is the correct name for LATEX-like usage under the didactic document type (section 5).

There are also parallel scripts "g2h" and "g2x".

"g2s" will byte compile "gellmu.el" if "gellmu.elc" is not present.

"g2h" runs the function gellmu-html for the case where the GELLMU file has been written
directly for HTML. The file ghtml.glm and the derived file ghtml.html are examples.

"g2x" runs the function gellmu-xml for the case where the GELLMU file has been written
directly for XML.

The directory "bin/win32" contains parallel, though more complicated, batch files for use in a
“DOS” command line under “Windows”.

7.4.2 Interactive Operation

Open GNU Emacs interactively on the GELLMU source file. When finished editing the
source, save it but keep Emacs open. Then do

M-x load-file gellmu.el

and
66URI: http://www.tug.org
67URI: http://www.ctan.org
68URI: http://expat.sourceforge.net/
69URI: ../gellmu.el
70URI: ../bin/linux/g2s
71None of the enclosed scripts either for linux or for win32 should be used without prior examination and

verification for suitability.

35



M-x gellmu-trans .

(It is better to have byte-compiled "gellmu.el" and if the byte-compiled version "gellmu.elc"
is in your Emacs load-path, then

M-x load-library gellmu

is faster.)

The SGML output should come up in a second buffer. Save that buffer to save the output.

Make any corrections or changes in the GELLMU source buffer and re-run

M-x gellmu-trans .

As with batch operation the functions gellmu-html and gellmu-xml, may be handled parallel to
gellmu-trans.

There are a number of other functions besides these three for obtaining syntactic translation
from GELLMU source to SGML. Each of these is, in fact, a front for calling gellmu-trans
with various combinations of variable settings. There are a great many user configurable
variables in the syntactic translator. Notable among these for regular GELLMU (section 4.1)
are (1) gellmu-parb-nogo and (2) gellmu-autoclose-list. See the variable documentation text,
available interactively when the GELLMU library is loaded in Emacs with the key combination
qquostrC-h C-h v, for more information. For a list of the names of all user configurable variables
see the variable documentation for gellmu-public-vars.

For example, setting gellmu-verblist true causes a sequence of lines beginning with the line
"\begin{verbatim}" and ending with the line "\end{verbatim}" to be considered verbatim
as in LATEX, i.e., without requiring escaped forms of special characters, and then to be set as a
simple verblist, which is in most circumstances superior to GELLMU’s version of pre-historic
verbatim.72

7.4.3 Interrupting the Syntactic Translator

Interruption of the GELLMU syntactic translator will be necessary in the event that the
combined use of newcommand, macro, Macro, and mathsym (advanced mode only) leads to
infinite recursive loops. Users should avoid the use of macro and Macro unless such use is
absolutely necessary since these metacommands present greater looping risks.

Inasmuch as there are two ways to invoke the syntactic translator, there are two different
procedures for interrupting it should that be necessary.

72The main reasons that this version is not the default with a call to gellmu-trans are:

1. It breaks the paradigm under which a GELLMU command name is the name of an SGML element.

2. It breaks backward compatibility with earlier versions of the syntactic translator, i.e., breaks older docu-
ments.

3. It is felt that the user invoking verblist this way should be aware of what is being done.

Note that direct invocation of verblist requires escaping special characters. Thus, using the function call
gellmu-verblist converts the name verbatim from a command name to a meta-command name.

36



Batch mode invocation This is the case when GNU Emacs is launched in batch processing
mode to run the syntactic translator. To interrupt the syntactic translator in this case
one must interrupt the Emacs process. The author does not know of any case when
Emacs does not respond to standard interrupts. For example, on linux systems pressing
“Control-C” when the process was launched from a shell provides a standard interrupt. If
the processed was launched in some other way, a normal "kill" addressed to the process
should have the same effect.

Interactive invocation This is the case when the syntactic translator is launched from within
the GNU Emacs editing interface. Use the standard Emacs function “quit”, accessed
with the key "C-g" (Control-G) to interrupt the syntactic translator.

7.5 Using the didactic production system

7.5.1 Staged Design

The items in the didactic production system are components for use with staged processing.
The document type may be used with any SGML system. Of course, one may not use a parser
that is limited to XML with the SGML version of the document type. Moreover, if one makes
use of features in the SGML version such as the positional argument and option elements, then
one might want to provide translation to the XML version of the document type.

No particular processing system is required for the XML version of the document type. For
example, one might profitably write an XSLT73 sheet for translation to some other format and
then submit the document and the XSLT sheet to an XSLT engine such as xt, xsltproc, or
saxon.

7.5.2 Default Staging

The release includes bin/linux/lmkg74 and bin/linux/mmkg75 as example driver scripts for
running the following sequence. (The bin/win3276 directory contains old driver scripts for the
MS Windows command line that might someday be worth updating.) The behavior of these
driver scripts depends on the way they are called though the specific of this are somewhat
different for lmkg than for mmkg. The older lmkg scripts do not generate XHTML+MathML
at this point they are provided primarily for backward compatibility.

The mmkg scripts by default make XHTML+MathML but not if called by a name, e.g., via
a symbolic link, without the substring "mm". If an mmkg script is called with a name ending
in the string "froms" or "fromx", then it will take as starting point, respectively, an SGML,
i.e., ".sgml", or author-level XML, i.e., ".xml", version of the document. Thus, for example,
mmkgfromx might be used to operate on a document that is an author-level XML translation
from a non-GELLMU source.

Caution. These scripts, like all shell scripts, should be examined for file system locations,
system environmental variables, and other platform-specific and location-specific issues. The

73URI: http://www.w3.org/TR/xslt
74URI: ../bin/linux/lmkg
75URI: ../bin/linux/mmkg
76URI: ../bin/win32

37



user who introduces a script on a platform should understand the script. A user who does not
understand a script should not attempt to introduce it on a local platform.

Flow in the didactic production system is portrayed in the following diagram:

These are the stages in the didactic production system pipeline:

1. Prepare GELLMU source using a text editor.

2. Process the source with the syntactic translator to obtain an SGML document under the
didactic document type.

3. Use nsgmls to validate the SGML document and obtain an ESIS for it as output.

4. Submit the SGML ESIS as input77 to the Perl program sgmlspl with the script
xplaingart.pl78 as file argument, obtaining an author-level XML document.

5. Use nsgmls to validate the author-level XML document and then submit its ESIS as input
to to sgmlspl with the script xmlgart.pl79, obtaining an elaborated XML document.

77Specifically, this mention of “input” refers to what is called “standard input” in a command line situation.
There may be a challenge here on platforms that do not provide a command line.

78URI: ../xplaingart.pl
79URI: ../xmlgart.pl

38



This document, which is accompanied by several auxiliary files80, has things such as
sectional unit numbers and cross references fully resolved so that there will be consistency
in these across the various output formats.

6. Use nsgmls to validate the elaborated XML document and submit its ESIS as input
multiply to sgmlspl:

(a) with the script htmlgart.pl81 to obtain a classical HTML document that then will
be validated if an HTML validation program is identified in the driver script.

(b) with the script ltxgart.pl82 as file argument, obtaining a LATEX document. The
LATEX document is then built with latex to make a DVI file and with pdflatex to
make a PDF file.

(c) for a pipeline using successive runs of sgmlspl with 3 scripts, mathcdata.pl83,
mathprep.pl84, and htmlgart.pl85 (called in a special way) to make a XHTML+MathML
file that is then checked for XML well-formedness using xmlwf, checked for certain
kinds of MathML errors using sgmlspl with mval.pl86, and validated if a suitable
validation program is identified in the driver script.

7.5.3 Parsing with nsgmls

The program nsgmls is part of the SP87 package, which includes extensive documentation.
Those familiar with it will want to ignore these hints.

Since for both the SGML and the XML versions of the didactic document type SP requires
non-default SGML declarations, it is recommended that the user employ SGML catalogs, one
for SGML and another for XML. The file system location of a catalog is conveyed to nsgmls
as the value of its command line argument immediately following the argument “-c”.

Each catalog should contain an SGMLDECL directive that is the file system location of an
SGML declaration. Aside from that a catalog may contain a number of three string lines of
either of the following forms

PUBLIC formal-public-identifier quoted-pathname
SYSTEM quoted-system-identifier quoted pathname

where the quoted pathname, which may be relative to the location of the catalog, should for
this context in each case be that of a DTD file.

It is recommended in each case that nsgmls be run with arguments “-l” (for propagating line
number references) and “-oempty” (for flagging defined-empty elements). For processing the
XML version of the didactic document type one should additionally use the argument “-wxml”.

Additionally, a user may wish to make locally-specific arrangements for the handling of character
sets.

80Formally, two of these auxiliary files are considered part of the elaborated XML document.
81URI: ../htmlgart.pl
82URI: ../ltxgart.pl
83URI: ../mathcdata.pl
84URI: ../mathprep.pl
85URI: ../htmlgart.pl
86URI: ../mval.pl
87URI: http://www.jclark.com/sp/

39



7.5.4 Processing with sgmlspl

The program sgmlspl is part of David Megginson’s SGMLSPM package. Megginson’s extensive
documentation for it may be found in the (December 1995) release found at CPAN88.89

One uses sgmlspl by calling the Perl program sgmlspl with an ESIS as input and a script as
argument. Additional arguments become arguments for the script.

Although some operating systems provide a way for dealing with a Perl program, which is stored
in a text file, as an executable object, in other cases one must explicitly call the Perl engine
as a program with an ESIS as input, the system name of sgmlspl as first argument, and (the
system name of) a script as second argument. In both cases one will want to arrange, perhaps
with an environmental variable or perhaps with the “-I” argument to the Perl engine, for the
directory containing "SGMLS.pm" and its supporting module "SGMLS/Output.pm" to be in its
path array @INC.

7.5.5 Environmental Variables

There are a number of environmental variables that affect processing in the didactic production
system. The names all begin with the string "GELLMU ". Of course, the names are case-
sensitive.

Many of these variables are set in the distributed driver scripts. When that is the case, the
distributed driver scripts commonly check for a previous setting (which may, therefore, be easily
placed in a fronting script that makes a setting and then just calls the distributed driver).

Setting environmentals can be difficult in a non-Unix-like operating system environment. This
is one reason why the author generally recommends that Windows users install GELLMU
under Cygwin90.

GELLMU Dir

The top of the directory tree where GELLMU is installed.

GELLMU StyleDir

URI or directory location of CSS and XSLT style sheets that is used by the didactic
production system in writing links in XML, HTML and XHTML+MathML files. The
value usually has a different meaning under the eye of a web server than in a local file
system. A relative URI or path is usually best. A value like "../webstyle" can often
be made to work both ways.

GELLMU CSSName

Name, relative if given relative syntax, to the value of GELLMU StyleDir, of the CSS
stylesheet written by the didactic production system in HTML and XHTML+MathML
files.

88URI: http://www.cpan.org/
89At the time of this release there was discussion in the UseNet newsgroup news:comp.text.sgml about a

proposed revision of SGMLSPM by another party. The code for "SGMLS.pm" included in this GELLMU release
contains a very small modification of Megginson’s 1995 release.

90URI: http://www.cygwin.com/

40



GELLMU XhtmlSuffix

Suffix given to XHTML or XHTML+MathML files written by htmlgart.pl.

GELLMU NoUMSS

Value 0 or 1: if 1, signals to htmlgart.pl that it should not link to W3C’s UMSS91

XSLT stylesheets.

GELLMU UTF8

Value 0 or 1: signals to sgmlspl scripts that Perl’s handling of the UTF-8 text encoding
should be invoked. The meaning is subtly different between Perl versions 5.6 and 5.8.

GELLMU Encoding

String value for text encoding that is set by the xplaingart.pl in writing author-
level XML and by xmlgart.pl in writing elaborated XML. (HTML, XHTML, and
XHTML+MathML are always written with the UTF-8 encoding.)

GELLMU LaTeXUTF8

Value 0 or 1: signals to latex and pdflatex to expect the UTF-8 encoded text in their
input.

GELLMU LaTeXStyle

Pathname for LATEX stylesheets that latex and pdflatex should use when such stylesheets
are not properly positioned for TEX system KPSE-based location. (It’s better to use a
local or personal TDS tree.)

GELLMU PAPER

String value for the paper used in printing; becomes an option for the documentclass
command in the output LATEX file.

GELLMU Memoir

Value 0 or 1: if 1, use the memoir, rather than article, documentclass in the output LATEX
file.

GELLMU DefaultEmptyEqncenter

Experimental. String value consisting of a small bit of LATEX wrapped as a Perl string
to use in tweeking the LATEX-rendered appearance of a GELLMU eqnarray (which is
rendered in LATEX using either align or aligned, depending on numbering arrangments)
in the case of an empty middle cell (eqncenter). The current default value used in
ltxgart.pl is the string " \qquad ". Be mindful of how such a string can be entered as
a literal string in Perl or as part of an on-the-fly environmental setting from a command
line shell.

GELLMU XLink

Value 0 or 1. How to handle links in MathML output when writing XHTML+MathML.
Such links, which are currently illegal inside XHTML+MathML math zones, are con-
fined to \text{...} areas in GELLMU. If the value is 1, use XLink; otherwise, switch
into the HTML namespace and write an HTML anchor. (Firefox handles both, while
more of the other browsers seem to choke on the namespace switch than choke on the
necessarily cumbersome use of XLink.)

91URI: http://www.w3.org/Math/XSL/

41



GELLMU OriginLabel

Name for an automatic label key, chiefly of occasional value for HTML and XHTML+MathML
outputs, that, when this variable is present in the environment, places a link target, with
id the value of this variable, at the top of the document.

Appendix A The GELLMU Archive

The GELLMU Archive is the web site http://www.albany.edu/~hammond/gellmu/.

It is the source for late breaking information about GELLMU. Among other things, it houses
a largely uncommented archive of examples92. This is provided in the belief that the study of
examples is one of the quickest ways to learn a markup language.

Of course, this document, which is furnished with the release, is also an example.

Another item, also an example, that is housed in the archive is The GELLMU FAQ93.

Appendix B Release Notes

This version of the manual was prepared for release 0.8.5 in July 2007. The GELLMU materials
(section 7.2) consist of:

1. The manual, which is this document.

2. The GELLMU syntactic translator, a Emacs Lisp program, which is the only item of
software required for those who simply wish to use GELLMU markup for the conscious
preparation of HTML documents or documents under some other classical SGML or
XML document type for which the user is otherwise equipped.

3. The GELLMU didactic production system, which consists of an SGML document type
called article, an XML document type also called article, and three separate collections
of Perl functions for the well-known Perl SGML processing framework sgmlspl by David
Megginson94. A very slightly modified version of Megginson’s Perl library SGMLSpm that
provides a method for detecting defined-empty SGML elements, as flagged in an SGML
parse stream in ESIS format, is included as part of the didactic production system. Since
it is by size 60% of the software content of the Megginson package on CPAN95, the rest
of the package, licensed under the GNU General Public License96 is distributed with the
didactic production system as well, though without its documentation. The distribution
includes 7 scripts for use with sgmlspl in the didactic production system pipeline. For
more on this see “Using the didactic production system” (section 7.5).

92URI: http://www.albany.edu/˜hammond/gellmu/examples
93URI: http://www.albany.edu/˜hammond/gellmu/examples/gfaq.html
94URI: http://www.megginson.com/
95URI: http://www.cpan.org/
96URI: http://www.gnu.org/copyleft/gpl.html

42



B.1 Comments on the Syntactic Translator

The GELLMU syntactic translator is more mature than the other components. The following
comments pertain to it.

internationalization

Internationalization has a considerable and evolving level of support in Emacs. The
concept is that an author resides in a locale. When the author enters a char-
acter from a locale, it gives rise in Emacs to a somewhat complicated multibyte
entity that can have “properties”. Particularly relevant variables in Emacs are:
coding-system-for-write and buffer-file-coding-system. GELLMU provides the
user variable gellmu-sgml-default-coding, which should be properly coordinated via
driver script settings with one’s SGML parser.

inclusions

It is not actually a limitation that a GELLMU source file cannot be included in another.
The primary reason is that one should make use of the inclusion mechanism of SGML.
For that one needs to define the included pieces as entities in the direct internal subset 97

of the source file and then reference each as an entity, e.g., "&sect2;" at the appropriate
location in the source file where it is to be included. Because the inclusion happens at
the SGML level there are two points to observe:

1. Macro information is local to each source file.

2. The situation is optimal for the location of validation errors provided that one’s
parser reports such errors by filename and line number since the syntactic translator
provides line number alignment between source and generated SGML.

A second reason is that source inclusion would disturb line number alignment between
source and SGML output. This is important for the interpretation of SGML valida-
tion error messages. Such validation is considered routine, and plays an important role
in detecting an author’s mistakes. Some author errors are diagnosed in the syntactic
translator.

A third reason, which at the same time might be considered also a disadvantage, is that
all of GELLMU’s macro facilities are local to each source file. This adds both robustness
and flexibility at the price of the inconvenience of physical inclusion of common macro
definitions.

variable management

This refers to the management of user variables in the syntactic translator. These are
Elisp variables. One who is familiar with Elisp should be able to provide values in batch

97The direct internal subset is the content of the optional argument of the documenttype metacommand that
follows its required argument. It should be noted in the didactic production system that the direct internal
subset cannot be propagated to the XML form of article because it is digested by any standard SGML parser
and, hence, by any translation based on a standard parsing. Thus, any pieces are merged in the XML form of
an article although the translator xmlgart might be modified to construct an internal declaration subset there
and provide partitioning of the XML version among filesystem pieces based on document structure.

43



mode without making changes in the Elisp source.98 Setting values interactively in the
Emacs editing interface can be done easily using "M-x set-variable".

With a future release it is likely that additionally a user resource file for custom variable
settings without the need for writing Elisp code will be provided.

Bugs

No serious existing problem is known in the GELLMU syntactic translator at the time
of this release. Of course, as stated in source code comments, there is no warranty of any
kind. Please report bugs to the author: hammond@math.albany.edu .

• Reserved element names. The GELLMU syntactic translator reserves for its own
internal use all SGML or XML element names in which the first numeric character
in the range “0–9” is the character “0”.

• Limitation on braces in macros. Unbalanced braces are not permitted in either
the name or the value field of any form of macro metacommand.

• First cell limitation. In the LATEX-like emulation of an array or tabular environ-
ment the first cell in each row must have something other than whitespace. Of
course, sometimes no content is wanted, and then \empty (for nil markup, not to be
confused with the mathematical \emptyset) is one way to handle it, but this author
usually uses something that is mostly inconsequential like “~” or “\,”. Another way
to handle it is to invoke the names of the SGML elements, i.e., \firstcell{} for
tabular or \firstacell{} for array.

• Concept of advanced GELLMU immature. Inasmuch as didactic article is the
only document type for which the idea of advanced GELLMU has been implemented,
the general concept of advanced GELLMU is not fully developed in the GELLMU
syntactic translator. Basic GELLMU is characterized in the GELLMU syntactic
translator by the evaluation of the Boolean variable gellmu-straight-sgml to “true”.
This automatically make the Boolean variable gellmu-regular-sgml true. Full LaTeX-
like support for the didactic production system is realized only by both of these
Booleans being false. Thus, advanced GELLMU will need to evolve in the space
in between, probably after the introduction of further such Boolean variables, some
public and some private. This technique will make it possible for the code to
continue performing as now when the variable gellmu-straight-sgml, the flag for basic
GELLMU, is true and also when both of these flags are false.

• Reserved strings. The strings “<<” and “>>” have been reserved as future notation
for mathematical objects. Although it might seem at first glance that this type of
short hand has no place apart from the fully LATEX-like environment of the GELLMU
syntactic translator in the context of the didactic production system, in which they
have not yet been used, it is actually not so clear that one could not make sensible use
of such notation in the context of “XHTML plus MathML” under advanced GELL-
MU along with other features such as blank lines for new paragraphs and many other
mathematical shortcuts. It awaits the further development of advanced GELLMU,
and reserving this notation is necessary to ensure backward compatibility.

98Please observe the rules of the LATEX project regarding filenames as well as the license rules of the GNU
General Public License if you wish to distribute a modified version of the Elisp source. Alternatively, the author
is always interested in learning of suggestions for change.

44



Consequently, for example, entering “<<a>>” is problematical, because only the first
“<” or “>” will be converted to something appropriate. In basic mode “&lt;” and
“&gt;” are one-step ways of circumventing this when these entities are available,
which is guaranteed for any form of HTML as well as for any form of XML. In the
didactic production system one should use “\ltc;” and “\gtc;”. For other cases
the one-step circumvention is to use entity references to the numeric character codes,
e.g., in ASCII “&#3C;” and “&#3E;”, and for convenience these may be brought up
as macros, perhaps “\lt” and “\gt”.

B.2 Comments on the Didactic Production System

The didactic production system is to be understood as a potential base for development. As
such it is not intended ever to offer everything that might be imagined. The following comments
pertain to it.

B.2.1 Internationalization

Internationalization has been a concern of the project. It is possible, for example, to use the
ISO-Latin-1 character ‘é’ in the name of an element. The didactic article document type offers,
for example, an element étale, which is a style, parallel to bold. Use of the character ‘é’ as a raw
word character data with the didactic production system is less robust than the more careful
"\acute{e}"99 construction, which is desirable for translation of article to formats that do not
support latin1. For that matter, the exact extent of LATEX’s support of latin1 is a bit tricky,
and the whole matter of internationalization is currently under review in the LATEX project.100

B.2.2 Document Type Definitions

Currently the project has one SGML document type definition and two XML document type
definitions. Files under the various document types are suffixed as follows:

First stage SGML .sgml
Author Level XML .xml
Elaborated XML .exml

Additionally, in the three steps of processing to generate an XHTML+MathML file from
an elaborated XML file there are two intermediate XML files generated, the first with suffix
".yml", which lives under the document type definition for an elaborated XML document, and
the second with suffix ".zml", an XML file for which there is no extant formal document type
definition.101

99The corresponding usage in LATEX would be "\’e"; this could be brought into GELLMU source using
\macro, but it must be resolved to a name in the output of the GELLMU syntactic translator where everything
that is markup needs a name. Rather than using a general container acute, the document type could have
provided a name for the specific character.
100Alternatively LATEX source can be submitted to the program lambda which is the LATEX format for the

program omega that is now under development as a substitute for Knuth’s TEX, the program, with internation-
alization as a stated goal.
101There is no formal document type definition for a ".zml" file because such a file is endowed via XML

attributes with information about tree structure for mathematical zones.

45



The author-level XML document type is formalized by the DTD ”axgellmu.dtd”, while the
elaborated XML document type is formalized by a modification that is found in the DTD
”uxgellmu.dtd”. (The latter was the only XML document type used with the regular
GELLMU production stream prior to October, 2006.)

The document type represented by ”uxgellmu.dtd” is now called the elaborated XML document
type.

The author-level XML document type is suitable as a translation target from other markups.
The elaborated XML document type should not be used as a translation target other than from
the GELLMU author-level XML document type.

All document type definitions are available under the UTF-8 text encoding. The two older
document type definitions will continue to exist for a while under the Latin-1 (ISO-8859-1)
text encoding. The text encoding of a so-called DTD file (not quite the same thing as a
document type definition) is significant in regard to the names of SGML/XML entities and
elements rather than in regard to document instances which might be processed. The names
of the DTD files are:

Latin-1 UTF-8
First stage SGML gellmu.dtd ugellmu.dtd
Author Level XML axgellmu.dtd
Elaborated XML xgellmu.dtd uxgellmu.dtd

B.2.3 Translation to XML

Presently the author-level XML files link to a CSS stylesheet that provides primitive rendering.
One could go further in this direction, but the rendering of mathematics will be limited without
more development in that direction of CSS.

B.2.4 Translation to HTML

Math in classic HTML The classic HTML output does not use graphic images for math-
ematical zones in the manner of programs like latex2html. Instead it uses pseudo-TEX
notation for math. There are a number of reasons:

1. Well typeset mathematics is available in the modern form of HTML that is more
precisely called XHTML+MathML.

2. Graphical images completely block accessibility in the sense of the World Wide Web
Consortium’s Web Accesibility Initiative102.

3. The present classical HTML output files may be deciphered in terminal window
browsers.

4. The present classical HTML output files may be “dumped” to plain text using a
program such as lynx or w3m for various sometimes useful purposes.

Style. HTML and XHTML+MathML made with the didactic production system now rely
on CSS, even, for some things, level 2 CSS.

102URI: http://www.w3.org/WAI/

46



B.2.5 Translation to LATEX

This translator writes LATEX2E. A number of packages, including graphicx, amsmath, amssymb,
amsfonts, bm, url (not hyperref for the standard track where the focus is on printed output),
and inputenc for UTF-8 (which may be needed even if the GELLMU source or, otherwise, the
author-level XML source is not UTF-8 encoded). Apart from current font availability issues,
the author would have preferred to invoke the T1 font encoding.

Even though GELLMU source uses the names equation and eqnarray, in the LATEX formatting
amsmath constructions are used.

A small modification of this translator can be used to write Adobe’s Portable Document Format
(PDF) with pages sized for screens rather than for paper.

B.2.6 Future Plans

This is a very limited list.

A literate document type definition.

Capable of spawning not only the 5 DTD’s but type definitions under other mechanisms
such as, for example, RelaxNG.

Mathematical Semantics

Provision for optional semantic tightening sufficient for authors wishing to be able to
export mathematical markup into computer algebra systems.

47


