
xyling – LATEX macros for linguistic graphics

using the xypic module

version 1.1, July 31, 2006

Ralf Vogel
Institut für Linguistik, Universität Potsdam

rvogel@ling.uni-potsdam.de

http://www.ling.uni-potsdam.de/~rvogel/xyling

December 31, 2004

This file explains the usage of the tree drawing macros in xyling.sty. Please
also inspect the style file which contains detailed comments of the macros.
These macros build on the xypic package by Kristoffer H. Rose, version 3.7.

xypic is loaded by xyling.sty with the dvips option in order to be able
to produce coloured branches. This has a bad side effect: The use of the
dvips option might cause branches to disappear when you produce a pdf file
with pdflatex. Likewise, other packages that use postscript, like pstricks,
might have such side effects. If you experience this, there are two ways of
overcoming it:

1. erase the dvips option in the xypic call in line 57 of xyling.sty, i.e.,
use: \RequirePackage[color,all]{xy}. You will no longer be able
to use coloured branches now, however. Similarly, you might have to
avoid using other postscript packages, too.

2. create the pdf file via dvips and ps2pdf conversion. This is how this
documentation pdf file is created.

Load xyling with \usepackage{xyling}.

The macros in this package model the construction of syntactic tree struc-

1

tures as a genuinely graphical problem: they contain three types of objects:� the grid� the node labels� the branches

The branches and nodes are positioned relative to the grid. It is essential
that each of these three elements is constructed independent of the other
two. They can be modified without unwanted side effects. This is, to my
mind, the most important difference to other tree drawing macro packages,
where, in particular, the label width often changes the angles of the branches.

A second major advantage to my mind lies in using the excellent xypic

package. xypic generates METAFONT code, so the drawing of trees is not
dependent on postscript specials, as, e.g., in Wolfgang Sternefeld’s ps-trees.
Hence, no postprocessing is required. The trees generated by postscript spe-
cials can neither be seen in a dvi previewer (at least not in my current version
of xdvi for linux), nor can they be taken over into a pdf file by pdflatex

(but it works in dvi to pdf conversion with dvipdf, or ps to pdf conversion
with ps2pdf).

1 The Grid

A tree is a simple macro of the form \Tree{ ... }. It is an xymatrix, with
& as column separator and \\ as row separator. You should be familiar with
this structure from tabulars and similar structures.

\Tree has an optional argument that can be used for changing the space
between columns. The default is 0, wich does not actually mean 0 space, but
rather the default space. A negative value makes the tree smaller, a positive
value makes it wider:

A B = \Tree{A & B}

A B = \Tree[1]{A & B}

A B = \Tree[-1]{A & B}

The distance between rows can also be controlled using the “k”ontrolled
version of \Tree, \Treek, which has one more obligatory argument, the dis-
tance between rows, which is defaulted to 2pc in \Tree. Check the examples
in table 1.

2

V P

V NP

= \Tree{ & VP \\ Vzero && NP }

V P

V NP

= \Treek{1}{ & VP \\ V && NP }

V P

V NP

= \Treek{3}{ & VP \\ V && NP }

V P

V NP

= \Treek{4}{ & VP \\ V && NP }

Table 1: Effects of the first argument of \Treek

2 The Nodes

A node is introduced with the command \K{...}. Text is centered, both
horizontally and vertically! This means that text boxes might not be aligned
on the same baseline in xypic, using its standard command for text insertion,
\txt. You can see this here:

muss musg must Muss Musg

The code:
\Tree{\txt{muss~~} \txt{musg~~} \txt{must~~}

\txt{Muss~~} \txt{Musg~~}}

The command \K contains a strut of 18pt to prevent this. This is perfect for
up to 12pt fonts:

muss musg must Muss Musg

The code:
\Tree{\K{muss~~}& \K{musg~~}& \K{must~~}& \K{Muss~~}& \K{Musg~~}}

Node labels have the width 2pc, which is fine, because most node labels

3

consist of two upright letters, like NP, VP etc. Extremely wide labels do not
affect the matrix, because the node width is determined independently of
the content of the node – by the value @W=2pc in the definition of \Tree and
\Treek.

\K has an optional argument to move text freely horizontally – measured in
pc. Positive values move the label to the right, negative values to the left.
1pc is about 0.5 em in a 12pt font. Horizontal adjustments are necessary for
wide nodes:

VP

very very very wide nodeV0

The code:

\Tree{ & \K{VP} \B{dl}\B{dr} \\

\K{\emph{very very very wide node}} & & \K{V0} }

We have two solutions to this problem. The global one is widen the inter-
column space with the optional argument of \Tree:

VP

very very very wide node V0

The code:

\Tree[1]{ & \K{VP} \B{dr}\B{dl} \\

\K{\emph{very very very wide node}} & & \K{V0} }

The second solution is moving the wide node a bit to the left, using the
optional argument of \K:

VP

very very very wide node V0

The code:

\Tree{ & \K{VP} \B{dr}\B{dl} \\

\K[-5]{\emph{very very very wide node}} & & \K{V0} }

\Kk offers full control over the vertical and horizontal dimension. The op-
tional argument of \Kk is the same as that of \K, but there is an addi-

4

tional obligatory argument denoting the vertical adjustment. So the syntax is:
\Kk[horizontal adjustment]{vertical adjustment}{node label}. The
command \Kk[1]{1}{VP} places the node VP 1pc right of and 1pc higher
than the standard position. This in fact allows you to put anything anywhere
in the tree. You can add comments to the side of the tree etc.

Often, especially in the terminal nodes, you might need more than one line
of text. Use the command \Below for putting text below text inserted by \K.
Check the following example:

NP

the
little
dog

\Tree{\K{NP}\B{d} \\

\K{the}\Below{little}\Below{dog}}

\Below has an optional argument for the vertical adjustment, negative value
lowers the text, positive value raises it. There also exists a kontrolled version,
Belowk, which has the horizontal adjustment as its first obligatory argument
in addition.

3 The Branches

Branch commands are inserted in the same field as their dominating node.
The simplest command is \B. It has one obligatory argument, the description
of the target field. It is given in the steps it takes to reach it. For instance,
\B{dl} draws a branch to the field one step down and one step left from
the current field. Use u and r for upwards and rightwards steps. Upwards
branches will strike through the label, however, so this is not very useful.
Branches should always go downwards.

We are now ready to draw our first tree:

5

VP

NP V′

John V0 NP

loves Mary

This is the code:

\Tree{ & \K{VP}\B{dl}\B{dr} \\

\K{NP}\B{d} & & \K{V$’$}\B{dl}\B{dr} \\

\K{\emph{John}}& \K{V0}\B{d} & & \K{NP}\B{d} \\

& \K{\emph{loves}} & & \K{\emph{Mary}} }

\B has an optional argument, the vertical adjustment of the starting position
of the branch, negative value, e.g. \B[-1]{d}, lowers the starting position,
positive value raises it.

Some grammar formalisms, require labels on branches – like HPSG, where
head and complement are explicitly denoted with the labels H and C. This
is quite easy to integrate. The command \B is based on the xypic command
\ar which has the option of putting a label on a line. It uses the syntax of
subscripting and superscripting, i.e., ^{} and _{}. If you put these commands
right behind a branch command, you will get labels on the branch, _{} puts
it on the branches left side, and ^{} on its right. The label is written in math
mode, i.e., slanted, unless you specify it to be in normal text font with, e.g.
\textnormal{}. Here comes an example:1

VP
C H

NP V′

H C

John V0 NP

loves Mary

1Thanks to Doug Arnold for his suggestion to include this feature.

6

\Tree{ & \K{VP}\B{dl}_{C}\B{dr}^{H} \\

\K{NP}\B{d} & & \K{V$’$}\B{dl}_H\B{dr}^C \\

\K{\emph{John}}& \K{V0}\B{d} & & \K{NP}\B{d} \\

& \K{\emph{loves}} & & \K{\emph{Mary}} }

There is no limitation on the number of branches either:

S

NP V NP NP

John gave Mary cookies

\Tree{ & \K{S} \B{dl}\B{d}\B{dr}\B{drr} \\

\K{NP}\B{d} & \K{V}\B{d} & \K{NP}\B{d} & \K{NP}\B{d} \\

\K{John} & \K{gave} & \K{Mary} & \K[2]{cookies} }

HPSG is also famous for crossing branches in cases where the linear order and
the hierarchical structure do not match. You can, of course, also let branches
cross. There are no system specific limits to what kinds of trees you might
want to draw. An admittedly ugly looking example is the following German
object initial sentence:

VP
C H

Subject V′

H C

V0 Object

Bücher
books

kaufte
bought

Maria
Maria

\Tree[.5]{ & \K{VP}\B{dl}_{C}\B{dr}^{H} \\

\K{Subject}\B{dddrr} && \K{V$’$}\B{dl}_{H}\B{dr}^{C} \\

& \K{V0}\B{dd} && \K{Object}\B{ddlll} \\ \\

\K{B\"ucher}\Below{books} & \K{kaufte} \Below{bought}

& \K{Maria}\Below{Maria} }

7

We also have two kontrolled versions of the branching command, \Bkk and
\Bk. Both adjust the starting and target positions of branches. They have
three arguments, 1: adjustment of starting position, 2: adjustment of tar-
get position, 3: destination. \Bk only allows for vertical adjustments and has
numbers as its first two arguments. \Bkk has comma-separated number pairs
as its first two arguments, for horizontal and vertical adjustment of start-
ing and target position. This gives you full control over the branches. Some
examples:

DP
[+definite]

the bible

\fbox{\Treek{3}{\K{DP}\Below{[+definite]}

\B[-5]{d}\\ \K{\emph{the~bible}} }}

XP

YP ZP

\Tree{ & \K{XP}\B{dl}\B{dr}\Bkk{2,0}{2,0}{dr} \\

\K{YP}& & \K{ZP}}

4 Abbreviations

The usage of branching commands can be made much easier by the definition
of macros for most frequently used combinations. These are the ones defined
in xyling.sty. Define new ones if you need them and/or change those given
here:

% \D goes to the position in the same column, one row below.

% The optional argument is the vertical adjustment of the

% starting position.

\newcommand{\D}[1][0]{\B[#1]{d}}

\newcommand{\Dk}[2]{\Bk{#1}{#2}{d}}

% \Dk is the \Bk version, i.e., it has two obligatory arguments

% defining the vertical adjustments of starting position and

% target position.

\newcommand{\DL}[1][0]{\B[#1]{dl}}

\newcommand{\DLL}[1][0]{\B[#1]{dll}}

\newcommand{\DLLL}[1][0]{\B[#1]{dlll}}

8

\newcommand{\DR}[1][0]{\B[#1]{dr}}

\newcommand{\DRR}[1][0]{\B[#1]{drr}}

\newcommand{\DRRR}[1][0]{\B[#1]{drrr}}

\newcommand{\DLk}[2][0]{\Bk{#1}{#2}{dl}}

\newcommand{\DLLk}[2][0]{\Bk{#1}{#2}{dll}}

\newcommand{\DLLLk}[2][0]{\Bk{#1}{#2}{dlll}}

\newcommand{\DRk}[2][0]{\Bk{#1}{#2}{dr}}

\newcommand{\DRRk}[2][0]{\Bk{#1}{#2}{drr}}

\newcommand{\DRRRk}[2][0]{\Bk{#1}{#2}{drrr}}

% Abbreviations for binary branches:

\newcommand{\V}[1][0]{\DL[#1]\DR[#1]}

\newcommand{\VV}[1][0]{\DLL[#1]\DRR[#1]}

\newcommand{\VR}[1][0]{\DL[#1]\DRR[#1]}

\newcommand{\VL}[1][0]{\DLL[#1]\DR[#1]}

\newcommand{\VVV}[1][0]{\DLLL[#1]\DRRR[#1]}

\newcommand{\VVR}[1][0]{\DLL[#1]\DRRR[#1]}

\newcommand{\VVL}[1][0]{\DLLL[#1]\DRR[#1]}

\newcommand{\VLL}[1][0]{\DLLL[#1]\DR[#1]}

\newcommand{\VRR}[1][0]{\DL[#1]\DRRR[#1]}

% Define more if you need them.

% Let’s make further abbreviations. A default VP has a

% \V branch. So let’s define \VP accordingly, and likewise

% Vbar, IP, CP etc.:

\newcommand{\VP}[1][]{\K{VP$_{#1}$}\V}

\newcommand{\Vbar}{\K[.5]{V$’$}\V}

\newcommand{\IP}[1][]{\K{IP$_{#1}$}\V}

\newcommand{\Ibar}{\K[.5]{I$’$}\V}

\newcommand{\CP}[1][]{\K{CP$_{#1}$}\V}

\newcommand{\Cbar}{\K[.5]{C$’$}\V}

\newcommand{\Nbar}{\K[.5]{N$’$}\V}

\newcommand{\PP}[1][]{\K{PP$_{#1}$}\V}

\newcommand{\DP}[1][]{\K{DP$_{#1}$}\V}

9

\newcommand{\AuxP}[1][]{\K{IP$_{#1}$}\V}

\newcommand{\Auxbar}{\K[.5]{I$’$}\V}

% Nodes reasonably without branch:

\newcommand{\NP}[1][]{\K{NP$_{#1}$}}

\newcommand{\Nzero}[1][]{\K[1]{N$^{0}_{#1}$}}

\newcommand{\Vzero}[1][]{\K[1]{V$^{0}_{#1}$}}

\newcommand{\Izero}[1][]{\K{I$^{0}_{#1}$}}

\newcommand{\Auxzero}[1][]{\K{I$^{0}_{#1}$}}

\newcommand{\Czero}[1][]{\K{C$^{0}_{#1}$}}

\newcommand{\Pzero}[1][]{\K{P$^{0}_{#1}$}}

\newcommand{\Dzero}[1][]{\K{D$^{0}_{#1}$}}

% Note that all of these commands, except for the

% Xbar nodes, have an optional argument for an index.

% If you use indices longer than one letter, you might

% need to do horizontal adjustment and have to use

% \K instead.

% This default system only needs new nodes for the

% terminals. Let’s define \T parallel to \K.

% \T has a vertical branch to the upper node, text is

% italicised. The optional argument, as before,

% allows for horizontal adjustment of the text:

\newcommand{\T}[2][0]{\POS[]\POS+(0,2)

\ar@{-}[u]-(0,4) \POS[]\K[#1]{\textit{#2}}}

The code for the tree on page 5 can now be reduced dramatically:

\Tree { & \VP \\

\NP & & \Vbar \\

\T{John} & \Vzero & & \NP \\

& \T{loves} & & \T{Mary}

}

Here is the tree, just to assure you:

10

VP

NP V′

John V0 NP

loves Mary

Chomskyan syntacticians like movement traces, here is one:

\newcommand{\Trace}[1][i]{\K[0.5]{t$_{#1}$}}

The optional argument, as with the \XP, \Xzero commands above, is the
index, here defaulted to ‘i’.

5 Triangles

Phrase structure trees often use triangles as abbreviations for larger struc-
tures which shall not be fledged out in full detail. The command \TRi can
be used instead of branching commands, introducing a triangle:2

S

NP VP

my beloved

wife

V0 NP

likes our old house

2Notice that the top node in this tree, S, is inserted exactly in the middle between two

columns – due to the horizontal adjustment of 5.2pc. The horizontal distance between the

centers of two neighbour fields is 10.4pc. The command \Bkk is then used to get symmetric

branches from this position, by adjusting the starting position horizontally by 5.2pc. You

see that the label and branch placement are not limited to the possibilities specified by

the grid. It only provides a usually satisfactory default.

11

\Tree{ && \K[5.2]{S}\Bkk{5.2,0}{0,0}{dl}

\Bkk{5.2,0}{0,0}{drr} \\

&\NP\TRi && & \VP \\

& \K{\emph{my beloved}}\Below{\emph{wife}} &&

\Vzero && \NP\TRi[2] \\

&&& \T{likes} && \K{\emph{our old house}}

}

Triangles need the nodes they refer to in the next lower row, in particular,
don’t forget the node [d] from the insertion point of the triangle. You will
get an error message otherwise. The text below the triangle is inserted in the
field [d] from the insertion point

Notice also that the first column in the tree is empty. It’s only purpose is
providing a field for the left bottom edge of the left triangle.

\TRi is a symmetric triangle. It has an optional argument, the horizontal
adjustment, negative value makes it narrower, positive value makes it wider,
as exemplified in the triangle for ‘our old house’ in the tree above.

\DTRi and \TRiD are rectangles, \DTRi has a [d] branch on the left, \TRiD
on the right, the optional argument allows for horizontal adjustment.

The kontrolled version of the triangle, \Trik, has two obligatory arguments
for the left and right horizontal adjustment, which can be specified separately
here. This potentially leads to asymmetric triangles. The syntax is:
\TRik{left}{right}, where \TRik{0}{0} = \TRi[0] = \TRi.

6 Links

It occurs very frequently that relations between elements of a tree shall be
indicated with linking arrows, for instance to illustrate syntactic movement.
Links are inserted with the commands \Link and Linkk. Both have as op-
tional argument the line style, which could be one of -,->,<-,.,.>,<.,--,
-->,<--, a.o. \Linkk has as its first argument the curving specification. It
is defaulted to 1.33pc in \Link. This might not be sufficient in many cases.
The second obligatory argument of \Linkk and the first obligatory argument
of \Link is the destination field specification.

12

CP

NPj C′

What C0

i IP

did NP I′

John ti VP

V0 tj

say

The code is as follows:

\Tree{ & \CP \\

\NP[j] && \Cbar \\

\T{What}& \Czero[i] && \IP \\

&\T{did} & \NP && \Ibar \\

& &\T{John}&\Trace

\Linkk[-->]{2.5}{llu}&&\VP \\

& & &&\Vzero && \Trace[j]

\Linkk[.>]{4.5}{-3,-6}\\

& & &&\T{say}&& }

Note that it is possible to specify the target location in terms of the number
of ‘hops’, as done for the long link here: \Linkk[.>]{4.5}{-3,-6} states
that the target of the link is 3 fields up and 6 fields left of the current field.
This is shorter than specifying it with “uuullllll”.

English affix hopping according to Chomsky (1981):

13

IP

NP I′

I0 VP

ti V0 NP

V+INFL

\Tree{ & \IP \\

\NP & & \Ibar \\

&\Izero\D& & \VP \\

&\Trace &\Vzero\D & & \NP \\

& &\K[6]{V+INFL} \Link[<-]{ul}

}

Finally, the commands \Link and \Linkk link labels to the left of the tree.
Links which are to the right of the tree, on its top, are specified with \UpLink

and \UpLinkk:

IP

NP I′

I0 VP

\Tree{ & \IP \\

\NP & &\Ibar \\

& \Izero &&\K{VP} \UpLink{-2,-2}}

7 Highlighting

Node labels are often highlighted with surrounding circles or squares, and,
in particular in presentations, with colours. Several ways of doing this are
integrated in xyling.

7.1 Highlighting sections of a tree with a rectangle

The command \QS draws a rectangle around two fields of the tree specified
by their absolute address. The syntax of the command is:
\QS[line style]{top left corner}{bottom right corner}. The abso-
lute address of a field is a number pair. The field “1,1” is the top left field of
the grid. The fields in the first row are 1,1 1,2 1,3 etc. Those in the second row
are 2,1 2,2 2,3 etc. Because the field addresses are given in absolute terms,
it makes no difference where within the \Tree specification a \QS command
appears:

14

VP

NP V′

V0 NP

\Tree{ & \VP \\

\NP & & \Vbar \\

& \Vzero && \NP \QS{1,1}{2,3}

\QS[.]{2,2}{3,4}

}

7.2 Highlighting node labels with circles and squares

The command \OO draws a circle around the node label in the current field.
The command \QQ draws a square around it:

VP

NP V′

V0 NP

\Tree{ & \VP \\

\NP\OO & & \Vbar \\

& \Vzero && \NP\QQ }

As you can see, the branches go inside the circles and squares. We need to
define branches which start and/or end at circles or squares.

The following are branches that always work. Starting point for all branches
is the same point on the circle. This makes branches rather short, and changes
the angles of diagonal branches:

\newcommand{\BoO}[1]{\Bk{-1.2}{1.2}{#1}}

% branch with circled start and target

\newcommand{\Bo}[1]{\Bk{-1.2}{0}{#1}}

% branch with circled start

\newcommand{\BO}[1]{\Bk{0}{1.2}{#1}}

% branch with circled target

VP

NP V′

V0 NP

\Tree{ & \K{VP}\OO\Bo{dl}\Bo{dr} \\

\NP & & \Vbar \\

& \Vzero && \NP\QQ }

15

The two [dl] and [dr] branches are no longer parallel. To get this, the
branches should start at different sides of the circle, as if they initiated at
the old position within the circle:

\newcommand{\DRo}[1][dr]{\Bkk{1.6,-1}{0,0}{#1}}

\newcommand{\DLo}[1][dl]{\Bkk{-1.6,-1.0}{0,0}{#1}}

\newcommand{\DRoO}[1][dr]{\Bkk{1.6,-1}{-1.8,1}{#1}}

\newcommand{\DLoO}[1][dl]{\Bkk{-1.6,-1}{1.8,1}{#1}}

\newcommand{\DRO}[1][dr]{\Bkk{0,0}{-1.8,1}{#1}}

\newcommand{\DLO}[1][dl]{\Bkk{0,0}{1.8,1}{#1}}

This helps:

VP

NP V′

V0 NP

\Tree{ & \K{VP}\OO\DLo\DRo \\

\NP & & \Vbar \\

& \Vzero && \NP\QQ }

The same has to be done with branches to and from squares:

\newcommand{\DRq}[1][dr]{\Bkk{1.5,-1}{0,0}{#1}}

\newcommand{\DLq}[1][dl]{\Bkk{-1.5,-1}{0,0}{#1}}

\newcommand{\DRQ}[1][dr]{\Bkk{0,0}{-2,1}{#1}}

\newcommand{\DLQ}[1][dl]{\Bkk{0,0}{2,1}{#1}}

\newcommand{\DRqQ}[1][dr]{\Bkk{1.5,-1}{-2,1}{#1}}

\newcommand{\DLqQ}[1][dl]{\Bkk{1.5,-1}{2,1}{#1}}

\newcommand{\DRoQ}[1][dr]{\Bkk{1.5,-1}{-2,1}{#1}}

\newcommand{\DLoQ}[1][dl]{\Bkk{-1.5,-1}{2,1}{#1}}

\newcommand{\DRqO}[1][dr]{\Bkk{1.6,-1}{-1.8,1}{#1}}

\newcommand{\DLqO}[1][dl]{\Bkk{1.6,-1}{1.8,1}{#1}}

\newcommand{\Dq}{\Dk{-1.1}{0}}

% only squared starting node

16

\newcommand{\DQ}{\Dk{0}{1}}

% only squared target node

\newcommand{\DqO}{\Dk{-1.1}{1.2}}

% squared start and circled target

\newcommand{\DoQ}{\Dk{-1.3}{1}}

% circled start and squared target

\newcommand{\DqQ}{\Dk{-1.1}{1}}

% square start and squared target

VP

NP V′

V0 NP

\Tree{ & \K{VP}\OO\DLo\DRo \\

\NP & & \K{V$’$}\DL\DRQ \\

& \Vzero && \NP\QQ }

The style file contains many abbreviations for the branch commands includ-
ing circles and squares around node labels.

7.3 Highlighting with Colours

Especially in presentations, colours are an option for highlighting parts of a
tree. xypic uses the postscript extensions to make this possible. Check the
xypic documentation for more on colours, especially for defining new colours.
I defined blue, red, green and gray versions of the standard commands \Bkk
and \Kk and the commands derived from them. So it is quite painless to
integrate colour:

IP

NP I′

John I0 VP

t V′

V0 NP

\Tree{

& \Kred{IP}\Vred \\

\Kblue{NP}\Bblue{d} &&

\Kred{I$’$}\Vred \\

\Tblue{John}& \Kred{I0} &&

\Kgray{VP} \Vgray \\

&& \Kgreen{t}\Linkblue{ull}&&

\Kgray{V$’$}\Vgray\\

&&&\Kgray{V0}&& \Kgray{NP} }

There also are macros for coloured circles and squares around nodes. They
are called \OOred, \QQred etc. But they do not fully function yet. They

17

have to be inserted as first element within a field, right after the &, and must
be followed by an empty group, {}.

8 Other Structures

8.1 Lexical Functional Grammar

On the basis of the general commands for grids, labels and branches, it is
easy to define commands for other phrase structure formats, or any kind of
graphical object that mixes text and lines. The following macros help drawing
LFG trees:

\newcommand{\Treelfg}[2][0]{\Treek[#1]{3}{#2}}

\newcommand{\Klfg}[2][]{%

\K{$\uparrow _{\textsc{\scriptsize #1}}=\downarrow$}\Below{#2}}

\newcommand{\Blfg}[1]{\Bk{-5}{0}{#1}}

\newcommand{\Vlfg}{\Blfg{dl}\Blfg{dr}}

Note that \Klfg produces two lines: The inheritance specification and the
category label. The optional argument is the grammatical function, which,
if available, is indexed to the \uparrow in the first line. Here comes an
example:

S

↑su=↓
NP

↑=↓
VP

↑=↓
N0

↑=↓
V0

↑ob=↓
NP

John loves Mary

\Treelfg{

& \Kk{-5}{S}\Vlfg \\

\Klfg[su]{NP}\Blfg{d} & &\Klfg{VP}\Vlfg\\

\Klfg{N0}\Blfg{d}&\Klfg{V0}

\Blfg{d} && \Klfg[ob]{NP}\Blfg{d} \\

\K{\emph{John}} &\K{\emph{loves}}& &

\K{\emph{Mary}}

}

Much of this can be abbreviated in the manner exemplified above. Feel free
to do so. Command names like \Klfg etc. could, of course, also be shortened.

18

8.2 Head Driven Phrase Structure Grammar

The following structure is from the HPSG introduction book “Syntactic The-
ory. A Formal Introduction” (second edition, 2003) by Sag, Wasow & Bender,
page 207:

S

1NPi VP

SPR 〈 1 〉

COMPS 〈 〉

They

V

SPR 〈 1 〉

COMPS 〈 2 〉

ARG-ST 〈 1 , 2 〉

2NPi

saw themselves

How did we draw the tree? First, we use Christopher Manning’s avm.sty to
define the AVM structures of each node separately:

\newcommand{\AVMone}{\begin{avm}\@1NP$_{i}$\end{avm}}

\newcommand{\AVMtwo}{\begin{avm}

\[SPR & \q< \@1 \q> \\

COMPS & \q<~ \q> \] \end{avm}}

\newcommand{\AVMthree}{\begin{avm}

\[SPR & \q< \@1 \q> \\

COMPS & \q< \@2 \q> \\

ARG-ST & \q< \@1 , \@2 \q> \] \end{avm}}

\newcommand{\AVMfour}{\begin{avm}\@2NP$_{i}$\end{avm}}

Next, we make up the tree, and call the four AVM nodes within \K or \Below.
The most tricky issue is the determination for the tree widths and how to
deal with the unequal sizes of the nodes. As you see in the code below, I
exploited three features of xyling: setting row and column distance to a new

19

value, adjusting branches, and the huge nodes VP and V were extended over
two rows!

\Treek[3]{3}{ & \K{S}\V \\ % adjust grid!

\Kk{-1}{\AVMone}\D && \K{VP}

\Below[-4]{\AVMtwo}\B[-13]{ddl}\B[-13]{ddr}\\ % Branches go ddr/ddl!

\K{They} \\ % skipped row for VP!

& \K{V}

\Below[-6]{\AVMthree} && \Kk{-1}{\AVMfour}\B{dd}\\ % Branch goes dd!

&\K{}\D[-1] \\ % Branch starts here!

&\K{saw} && \K{themselves}}

Note an incompatibility of avm.sty: When I first experimented with xyling.sty
and avm.sty, the linebraks in my avm’s disappeared. It took me a while to
figure out that this was not due to xyling, but caused by the tabularx package
which I had loaded for another purpose. So, if you use avm.sty, don’t use
tabularx!

8.3 Arrows in Text

Even when we do not use trees, but only strings or bracketed notations, we
sometimes want to express relations between elements within these notations
by arrows. It is possible to use xyling macros for this, too. We first define a
new grid, \TExt. It has an obligatory argument – the text, which can be split
into several fields by the field separator &. The distance between fields is set
to 0, such that even parts of words can be put in subsequent fields without
visible effect:

noodles noodles \TExt{\textnormal{nood} & \textnormal{les} &

\textnormal{~~} & \textnormal{noodles}}

The fields within the \TExt environment are inserted with \Txt or \TXT.
They mainly provide a strut to yield correct horizontal alignment. \Txt has
a blank before the text, \TXT has none. I.e., if a word is split over two fields,
the second part of the word should be introduced with \TXT. Likewise, the
first word of the whole string.

The arrows differ in their depths, such that several arrows can be used within
one \TExt without overlapping. The narrowest connector is called SCOn, we
then have \COn, \COnn and \COnnn. They have an optional argument for
the line style, - for solid, -- for dashed, . for dotted. The commands are

20

inserted at the starting point of the arrow. The obligatory argument is the
target field destination, e.g. [ll], [r] etc. A simple example:

What did you see t ? \TExt{\TXT{What} & \Txt{did you see} &

\Txt{t}\COn{ll} & \Txt{?}}

The command \COnk allows for control of the link depth with its first oblig-
atory argument. The other arguments are as before.

We also have connectors with labels, which can be above or below the arrow.
This depends on whether the arrow goes from left to right or vice versa.
\COnl with right to left yields a label above the arrow:

What did you see t
movement

? \TExt{\TXT{What} & \Txt{did you see} &

\Txt{t}\COnl{ll}{movement} & \Txt{?}}

What did you see t

movement

? \TExt{\TXT{What} & \Txt{did you see} &

\Txt{t}\COnr{ll}{movement} & \Txt{?}}

8.4 Autosegmental Phonology

Not being an phonologist, I can only offer some beginner’s applications, but
I will gladly add macros that you might supply. Just send them to me. Here
is one application that is based on the previously introduced \TExt matrix.
It is not limited to having just one row, and one application of this feature
are the structures used in autosegmental phonology. Have a look at this:

Root tier: k t b

Skeletal tier: C V C V C V

Vocalic melody tier: a

The code uses the kontrolled matrix for text, \TExtk, with inter-column
space in pc as mandatory argument, and inter-row space in pc as optional
argument. The command \Sl provides the slots of the tier. At the beginning
of each row, the tier’s name is given with the macro \Tname which has as
optional argument the name width in cm. Links between slots are variants of
our branch commands, \Ln draws a solid line, and \Lnd a dashed line. \Lnu
is an abbreviation for \Ln{u}. Define more macros, if you need them. By the
way, the example above is Arabic for ‘he/she wrote’. This is the code:

21

\TExtk[1]{1}{

\Tname[5]{Root tier:}&

\Sl{k} & & \Sl{t} & &\Sl{b} & \\

\Tname[5]{Skeletal tier:}&

\Sl{C}\Lnu&\Sl{V}&\Sl{C}\Lnu&\Sl{V}&\Sl{C}\Lnu&\Sl{V}\\

\Tname[5]{Vocalic melody tier:}&

& \Sl{a}\Lnu\Lnd{urr}\Lnd{urrrr}

}

8.5 Graphical Schemata – Arrows instead of lines

The branching command is based on the xypic arrow command \ar. It can
do a lot more than just drawing solid lines. It can, for instance, draw arrows.
As this is sometimes useful, we integrate an arrow command, \AR:

\newcommand{\ARkk}[3]{\POS[]-(0,4)+(#1)\ar@{->}[#3]+(0,2)+(#2)}

\newcommand{\ARk}[3]{\ARkk{0,#1}{0,#2}{#3}}

\newcommand{\AR}[2][0]{\ARk{#1}{0}{#2}}

This helps us draw the GB schema:

D-Structure

S-Structure

LF PF

The code is rather small:

\fbox{

\Treek[.5]{3}{

& \K{D-Structure}\AR{d} \\

& \K{S-Structure} \AR{dl}\AR{dr}\\

\K{LF} & & \K{PF} }

}

We can also use alternative line styles, like dashes, dots, and waves:

\newcommand{\Bdot}[2][0]{\POS[]-(0,4)\POS+(0,#1)%

\ar@{.}[#2]+(0,2)}

\newcommand{\ARdot}[2][0]{\POS[]\POS-(0,4)\POS+(0,#1)%

\ar@{.>}[#2]+(0,2)}

\newcommand{\Bdash}[2][0]{\POS[]-(0,4)\POS+(0,#1)%

\ar@{--}[#2]+(0,2)}

\newcommand{\ARdash}[2][0]{\POS[]\POS-(0,4)\POS+(0,#1)%

22

\ar@{-->}[#2]+(0,2)}

\newcommand{\Bwav}[2][0]{\POS[]-(0,4)\POS+(0,#1)%

\ar@{~}[#2]+(0,2)}

\newcommand{\ARwav}[2][0]{\POS[]\POS-(0,4)\POS+(0,#1)%

\ar@{~>}[#2]+(0,2)}

Joost Kremers, University of Frankfurt/Main, <j.kremers@em.uni-frankfurt.de>,
has kindfully defined a “generalised branch” command that I happily inte-
grate here:

\newcommand{\GBkk}[4]{\POS[]-(0,4)+(#1)\ar@{#4}[#3]+(0,2)+(#2)}

\newcommand{\GBk}[4]{\GBkk{0,#1}{0,#2}{#3}{#4}}

\newcommand{\GB}[3][0]{\GBk{#1}{0}{#2}{#3}}

The branch commands are the same as the \Bkk, \Bk and \B commands, ex-
cept that they have one more mandatory argument, and the final mandatory
argument is the line style, which can be as follows:

- solid line
– dashed line
= double line
== dashed double line
. dotted line
: dotted double line~ wavy line~~ dashed wavy line

To yield arrows, you only need to extend the line style with leading or final
< or >, as e.g. in \GB{=>}{dl}.

VP \Tree{ & \K{VP}\GB{dl}{=}\GB{dr}{=}\\ && }

The minimalist syntax model is often schematised with a dashed arrow to
PF:

23

Lexicon

Spell-out

LF PF

\fbox{

\Treek{2.5}{

\K{\emph{Lexicon}}\AR{dd} \\

\ARdash[3]{dr} & \K{\emph{Spell-out}}\\

\K{LF} & \K{PF} } }

It might sometimes be useful to have branches and arrows to the field on
the right in the same row. The command \R makes this possible. The syntax
is: \R[line style]{destination}. If you want to, you can write phrase
structure rules that way . . . , . . . :

S NP VP

\Tree[-1]{\K{S}\R[->]{rr} && \K[5]{NP~~VP}}

Versions of \R that link circles and squares are also defined in xyling.sty.
Another funny application are neural nets:

Layer 1

Layer 2

Layer 3

\Treek[.5]{4}{

\K[-2]{\emph{Layer 1}}&&&

\OO \DLLoO\DLoO \DoO \DRoO\DRRoO\DRRRoO\DRoO[drrrr]&

\OO \DLLLoO\DLLoO\DLoO \DoO \DRoO\DRRoO\DRRRoO &

\OO \DLoO[dllll]\DLLLoO\DLLoO\DLoO \DoO \DRoO\DRRoO \\

\K[-2]{\emph{Layer 2}}&

\OO \BoO{drr}\BoO{drrr}\BoO{drrrr} \RoO{r} &

\OO \BoO{dr}\BoO{drr}\BoO{drrr} \RoO{r} &

\OO \BoO{d}\BoO{dr}\BoO{drr} \RoO{r} &

\OO \BoO{dl}\BoO{d}\BoO{dr} \RoO{r} &

\OO \BoO{dll}\BoO{dl}\BoO{d} \RoO{r} &

24

\OO \BoO{dlll}\BoO{dll}\BoO{dl} \RoO{r} &

\OO \BoO{dllll}\BoO{dlll}\BoO{dll} \\

\K[-2]{\emph{Layer 3}} &&&\OO & \OO & \OO }

Compare the two different connection styles between layers 1,2 and 2,3, re-
spectively.

9 Some Extras

These are two handy macros for constructing metrical grids and glosses. They
have nothing to do with xypic. I include them because I find them useful.

Metrical Grids The command \PX has one obligatory argument, the piece
of text which is to receive grid marks, and, as optional argument, the number
of grid marks, defaulted to 1:

×
×
Farah

×
Fawcett

×
×
×
Majors \PX[2]{Fa}rah \PX{Faw}cett \PX[3]{Ma}jors

\PX has center alignment of text and mark, for left and right alignment use
\PXl and PXr. These macros require the ifthen package.

Glosses For linguistic glosses, I normally use cgloss4e.sty. But when
I want to gloss only one or two words within an example, cgloss is not
that handy, as you must make as many glosses as there are words within an
example, which leads to a sequence of empty groups. \PG has two arguments
for the word and its gloss:

John
nom

loves Mary
acc

\PG{John}{\textsc{nom}} loves

\PG{Mary}{\textsc{acc}}

\PG aligns word and gloss at the left edge, for center and right alignment use
\PGc and \PGr.

For bug reports, comments and suggestions, contact:
rvogel@ling.uni-potsdam.de

25

