
The widetable package
Claudio Beccari∗

Version number v.2.1; last revised on 2020-01-13.

Contents
1 Legalese 1

2 Introduction 2

3 Normal use of widetable 3

4 The method 3

5 The xparse package 4

6 Using the ε-TEX facilities 4

7 Usage 5

8 Warnings 6

9 Acknowledgements 7

10 Implementation 7

11 Conclusion 9

Abstract
This package allows to typeset tables of specified width, provided they

fit in one page. Instead of introducing an infinite stretching glue, which has
an unsymmetrical effect in standard LATEX, here the \tabcolsep dimension
is computed so as to have the table come out with the proper width.

1 Legalese
This file is part of the widetable package.

This work may be distributed and/or modified under the conditions of the
LaTeX Project Public License, either version 1.3 of this license or (at your op-
tion) any later version. The latest version of this license is in http://www.latex-
project.org/lppl.txt and version 1.3 or later is part of all distributions of LaTeX
version 2003/12/01 or later.

This work has the LPPL maintenance status “maintained”.
The Current Maintainer of this work is Claudio Beccari
The list of all files belonging to the distribution is given in the file ‘README.txt’.
The list of derived (unpacked) files belonging to the distribution and covered

by the LPPL is contained in the README.txt file.
∗claudio dot beccari at gmail dot com

1

2 Introduction
It is well known that when the standard environment tabular* is opened with a
specified width, it is necessary to introduce in the delimiter declaration @{...}
(possibly) of the first item of the column descriptors argument something like

\extracolsep{\fill}

in addition to other possible printable delimiters, such as vertical lines, and other
fixed spacing commands. The effect is that the extra stretchable glue operates
only on the left of each cell after (i.e. to the right of) the cell that received the
declaration; the first cell will never get larger in spite of the presence of this glue.

Another package, tabularX, normally distributed by the LATEX3 Team with
every version of the TEX system distribution, allows to create expandable cells,
provided they contain only text and, possibly, in-line math. These expandable cells
are identified with the column descriptor X; this identifier defines a paragraph-like
cell, the width of which gets determined after some runs of the typesetter on the
same source tabular material, so as to find out the correct width of the textual
columns.

Also tabu can build tables of specified width; but it has so many functionalities
that it appears to be oversized for a simple task such as the one performed by
widetable and tabularx.

The approach here is a little bit different: the cell contents need not be textual
and no cell width is determined in one or more runs of the typesetting program;
instead the inter column glue is determined so as to fill every cell on both sides
with the proper space. The macros contained in this package are insensitive to the
particular kind of cell descriptors and to the presence of multiple \multicolumn
commands. It proved to work properly also if the array package extensions are
used. Nevertheless if multiple \multicolumn commands in different rows “inter-
lace” the columns they work on, poor results would be obtained: in this case the
table is typeset the same as with the environment tabular.

On the other hand, as well as for tabularx, it needs to typeset the table
three times; the first two times with standard values for the inter column glue
\tabcolsep, in order to find the exact parameters of the linear dependence of the
table width from the value of that glue; then executes some computations so as to
determine the final correct value of \tabcolsep, and on the third run it eventually
typesets the table with the specified width.

The typesetting time increase needed for these three tabular runs is gener-
ally negligible, nevertheless if a specific document contained many dozens of such
tables, the small compilation time increase might become perceivable.

It might be noticed that, in order to perform the necessary computations, a
fractional division algorithm must be used; since 2009 any TEX installation uses
the ε-TEX extensions; therefore fractional division is not any more an issue as it
was in previous versions of this package.

2

3 Normal use of widetable

With this release of the bundle, the environment to be used is named widetabular,
although the previous name, widetable, remains available for backwards compat-
ibility.

This package may issue an error message when the environment includes other
unhidden ones; this is explained in the Implementation section. In plain words,
if a widetabular environment is nested into another widetabular one, the inner
environment must be “hidden” within a group (i.e. a couple of paired braces); this
might not be necessary with other tabular-like environments.

Here it is assumed that the user first uses the standard tabular environment
and typesets it to its natural width; should it appear too small, and should it be
typeset at a larger width, for example by filling the total \linewidth available at
that specific point, then and only then the user switches to widetabular. Should
the initial table be moderately larger than \linewidth, then it might be shrunk to
\linewidth by means of widetabular, provided there are enough columns, and
therefore column delimiters, to be reduced in size. Of course it is impossible to
typeset any tabular with any negative value of \tabcolsep; or better, the software
does not care, but the result might get very messy.

In other words widetabular should be used as a second resort, so as to correct
some typesetting features of the standard environment not considered aesthetically
acceptable.

The syntax for using the environment widetabular is the same as that of the
tabular* one; the only difference is the name. Therefore one has to specify:

\begin{widetabular}{〈width〉}[〈alignment〉]{〈column descriptors〉}
〈row of cells〉\\
〈row of cells〉\\
...
〈row of cells〉\\
〈row of cells〉\\
\end{widetabular}

4 The method
The principle on which this little package is based is the following one: suppose a
certain tabular is typeset with an inter column glue t0 = 0 pt and that its width
turns out to be l0; suppose the same tabular material is typeset again with an
inter column glue t1 > 0 pt so that the table gets as large as l1 > l0. Then, if the
table has to be as wide as l the inter column glue t should be

t = l − l0
l1 − l0

· t1

Therefore we need to run the typesetting of the same tabular material with
the two values of the inter column glue set to zero and to t1, respectively, so as to

3

find the widths l0 and l1. Afterwards we have to determine the correct final value
t to get the desired value l, and typeset once again the same tabular material for
the last time.

Of course the first two runs must put their results into suitable boxes so as
to avoid outputting them into the output file, while at the same time allowing to
record the width of such enclosing boxes.

5 The xparse package
The previous version of this package already used the xparse package function-
alitIes; but this latter package evolves and now it is possible to “save” the body
of the table as an argument to the opening commands, therefore now it is much
simpler to use the same table-body several times. Of course this body is saved
in internal memory areas, but this task is implemented by the internal macros
written in the L3 LATEX language. The advantage of using the xparse package
consists in a much shorter code that is easier to read and maintain. The number
of macros for this package is reduced by a factor of about four, compared to the
previous versions 1.x of this package.

6 Using the ε-TEX facilities
The L3 language and its libraries now offer the user some LATEX interfaces to its
internal macros to the point of executing also floating point operations that span
a wide range; the suitable package would be xfp. Nevertheless it appears sort of
overdone for the simple computations needed here..

At the same time the ε-TEX extended functionalities are now part of all the
interpreters of the LATEX language, pdftex, luatex, and xetex; this renders this
package usable with any typesetting programs based on LATEX: pdflatex, lualatex,
and xelatex.

In facts such ε-TEX extensions provide also a scaling operation: given the
length L1 and two homogeneous quantities X1 and X2 (where such quantities
may be either two integer numbers, or two dimensions), such scaling operation
scales L1 to L2 by computing

L2 = L1X2

X1

The intermediate results are actually done with integer arithmetics (internally
lengths are coded as an integer number of scaled points) but they are done in
double words so as to avoid underflows and overflows almost always. Some unusual
situations might exist where underflows or overflows do occur, but they must be
very unusual, and very unlikely to happen for the calculations of this package.
This would happen if for any reason no inter column glue is available; we have
difficulties imagining such a table and cannot make even a silly example.

The use of the ε-TEX extensions implies that this package works correctly only
with modern engines and kernel formats.

4

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school

teacher
Joan Laura daughter 14 junior high school

student
Jack Johnathan son 8 elementary school pupil

Table 1: A regular table typeset with tabular and its width is its natural one

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school

teacher
Joan Laura daughter 14 junior high school

student
Jack Johnathan son 8 elementary school pupil

Table 2: A table typeset with tabular* where the total width has been set to
\textwidth

7 Usage
As explained above, the normal usage of widetabular requires the same syntax
as that of tabular* except that no explicit stretchable glue has to be inserted in
the column separators as it is necessary to do with tabular*. Examine the table
shown in table 11 that is typeset at its natural width.

The same table can be built with tabular* as in table 2.
As it can be seen, large inter column spaces are inserted right at the left of the

contents of every cell except the first one, and the table appears too much spread
out.

The tabular can be built also with the environment tabularx, defined by the
tabularX package; see the result in table 3.

As it is noticeable the whole space to enlarge the tabular has been used by the
X column, and the table does not look right.

Now we show the difference by using the widetabular environment in table 4.

In table 4 the column specifications are the same as those used in the code
for table 1, but only the spaces separating the columns have been modified, not
the column types and widths. Of course one may object that the table spaces
are too wide and table 1 looks better. But if, for example, in a certain document
all tables are required to span the whole measure, the solution shown in table 4

1Notice that here the name “table” is used to refer to the table floating environment and its
caption, while “tabular” is reserved to the tabular itself and its contents.

5

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school teacher
Joan Laura daughter 14 junior high school student
Jack Johnathan son 8 elementary school pupil

Table 3: A table typeset with tabularx where the total width has been set to
\textwidth

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school

teacher
Joan Laura daughter 14 junior high school

student
Jack Johnathan son 8 elementary school pupil
Goofy Pluto
Donald Duck Mickey Mouse 4 Walt Disney

Table 4: A table typeset with widetabular where the total width has been set to
\textwidth

is the only one acceptable among these four examples. It’s up to the user to
chose among these four solutions in terms of the actual tabular contents and the
stylistic constraints the document must fulfil. If the examples were typeset with
the (horizontal and vertical rules that emphasise each cell (instead of using only the
booktabs horizontal rules) it would be more evident how the various environments
shape the cells and where they insert the extra spacing so as to reach the desired
width.

8 Warnings
Normally widetabular works well as described in the example shown in table 4.
Nevertheless there are some issues that may alter its smooth working.

One such issue takes place when the specified table width is shorter than the
natural width. In this case the table is typeset as in table 1 at its natural width,
but a warning is issued that explains why: the warning looks like this

Package widetable Warning: The minimum width of the tabular material
(widetable) amounts to 225.19809pt, and is larger
(widetable) than the required width of 177.5pt
(widetable)
(widetable) The table is typeset with the default
(widetable) column spacing on input line 415.

6

As usual the warning is contained into the .aux file and in the console, if the shell
editor displays it..

When some adjacent cells are grouped with the \multicolumn command; the
table might come out of the correct specified width even if the spanned cells (in
different rows) do not belong to the same columns, but the table looks very ugly;
we cannot say that widetable is responsible of this ugliness, or if the table is ill
formed because of using such overlapping spanned cells; the best suggestion is to
avoid using such “acrobatic” tabular compositions.

9 Acknowledgements
I must deeply thank Enrico Gregorio for the revision of this package macros and
for his wise suggestions about the correct programming style. If some glitch still
remains in the programming style, that is just my fault.

10 Implementation
This package has been already identified by the commands extracted by the
doctrip package, during the .dtx file compilation.

We require the xparse package in order to define the widetable environment
with its extended commands. This package version should be younger the the
specified date contained in the optional argument. If it is not, a warning is issued;
but expect errors. It is a warning that urges the user to upgrade his/her TEX
system installation.

1 \RequirePackage{xparse}[2019-05-01]

We require the xparse package in order to define the environment widetable
with its extended commands. Tis package version should be younger the the
specified date contained in the optional argument. If it is not, a warning is issued;
but expect errors. It is a warning that should urge the user to upgrade his/her
TEX system installation.

The special environment opening macro requires the following syntax:

\begin{widetable}{〈width〉}[〈alignment〉]{〈column descriptors〉}
〈table body〉
\end{widetable}

We further define the tabular environment typesetting. Actually, with the new
xparse faciltiies, the opening command parameters can be used also in the closing
part of the environment, so that when the 〈width〉 and the 〈column descriptors〉
are given to the opening environment statement, they can be used again and again
also by the closing commands.

Actually the widetabular environment can contain other environments, even
another widetabular ones, but the external one should not be upset by the in-
ternal ones. In order to achieve this result, it is necessary that embedded envi-
ronments are hidden within a group delimited by a pair of matching braces; this

7

is compulsory for an embedded widetabular environment, while it is not strictly
required for other environments.

The environment opening and closing actions are defined by means of low level
commands.

The opening part of the environment reduces to nothing else but the back-
ground L3 functions executed by the \begin command implementation and the
correct parsing of the list of argument descriptors

2 \DeclareDocumentEnvironment{widetabular}{m O{c} m +b}
3 {% OPENING WIDETABLE COMMANDS
4 }%

These arguments have the following meanings.

Argument number one It is mandatory and represents the desired table width.

Argument number two It is optional. With a default value of c the table is
aligned with respect to its math axis; the other possible values are t for top
alignment, and b for bottom alignment; they are the same values used for
the LATEX-kernel tabular environments.

Argument number three It is mandatory; it should contain all the column
descriptors and inter-column separators, possibly in the extended forms pro-
vided by the array package.

Argument number four It represents an xparse functionality by which the
whole environment body is internally saved in a sort of verbatim mode and
become usable again and again as argument #4.

The closing statement will actually do the whole job. It first sets \tabcolsep
to zero and typesets the resulting table into box zero; it uses, with parameter #4,
the table body collected with the argument descriptor b of the opening command.

Then it sets \tabcolsep to 6 pt (the default value) and typesets again the
table into box two. The width of box zero is l0 and that of box two is l1; these
are the lengths needed by the equation that evaluates the final typesetting inter
column spacing.

The arbitrary constant of 6 pt is t1, and the specified width l (parameter #1)
are used to compute the new value of \tabcolsep. The subtractions are computed
directly on the dimensions and passed to a \dimexpr expression so as to determine
the new \tabcolsep value.

The table is eventually typeset without using boxes, while the contents of box
zero and box two, upon exiting the environment, are restored to any value they
might have contained before entering widetabular.

5 {% CLOSING WIDETABLE
6 \dimen0=#1 % required width
7 \tabcolsep=\z@
8 \setbox\z@=\hbox{\tabular{#3}#4\endtabular}%
9 \tabcolsep=6pt\relax

10 \setbox\tw@=\hbox{\tabular{#3}#4\endtabular}%
11 \ifdim\dimen0>\wd\z@

8

12 \tabcolsep=%
13 \dimexpr\tabcolsep*(\dimen0-\wd\z@)/(\wd\tw@-\wd\z@)\relax
14 \else
15 \ifdim\dimen0<\wd\z@
16 \PackageWarning{widetable}{%
17 The minimum width of the tabular material\MessageBreak
18 amounts to \the\wd\z@, and is larger\MessageBreak
19 than the required width of \the\dimen0\MessageBreak
20 \MessageBreak
21 The table is typeset with the default\MessageBreak
22 column spacing}%
23 \fi
24 \fi
25 \tabular[#2]{#3}#4\endtabular
26 \ignorespacesafterend
27 }

For backward compatibility we let the names \widetable and \endwidetable
equal respectively to \widetabular and \endwidetabular, so that the old name of
the environment provided by this package is still usable; compiling old documents
is till possible; nevertheless these “old” names are discouraged; in a future they
might not be available any more.
28 \let\widetable\widetabular \let\endwidetable\endwidetabular

Notice the test and the warning: widetabular modifies the table width only if
its minimum width (obtained with \tabcolsep equal to zero) is smaller than the
requested width; otherwise it typesets the table with the default inter column glue,
and outputs the warning message.

11 Conclusion
Tables should always have their standard inter column spaces, but. . . The default
value of \tabcolsep is fixed by the document class, it is not prescribed by a
supreme law: therefore what does it mean “natural width”. Probably the one
determined by the class default value of \tabcolsep, so that all tables have the
same general look. But here we used the phrase “minimum width” as that of the
tabulars width when the inter column glue is set to zero; we avoided speaking of
the “natural width” because the phrase is not specific.

Nevertheless sometimes a table is slightly wider than the current measure; why
not shrink the table by shrinking \tabcolsep by the right amount in order to fit
the measure? The result might be a table where only the inter column spaces are
shrunk, not the whole table, fonts, drawings, and figures included, a result eas-
ily obtainable with a \resizebox command available through the graphicx.sty
package. Nobody forbids to follow this technique, of course, but the widetable
route might yield a better result.

The same is true when a natural width table is slightly shorter than the mea-
sure; enlarging it by retouching the \tabcolsep inter column space might be the

9

right solution in order to avoid a multitude of slightly different indents or left
margins.
29
30 \endinput

10

