
User’s Guide to the Diagram Environment,
Version 5.0

Paul Burchard (burchard@pobox.com)

June 5, 2005

1 Introduction

The diagram environment allows the LATEX2ε user to easily create complex
commutative diagrams, by placing formula nodes on a conceptual grid and
attaching arrows to them.

The grid used in these diagrams is not a fixed square grid. Instead, the
environment automatically generates a correctly scaled and shaped rectan-
gular grid which will compactly hold the formulas, while leaving room for
the arrows between them. Moreover, the arrows automatically adapt to the
spaces between the formulas being connected. These features are accom-
plished with a three-pass algorithm that takes into account the width and
height of every formula.

The arrows in these diagrams are quite flexible. Arrows may, in any
combination,

• point in any of a large number of lattice directions;

• span multiple rows and columns of the grid;

• cross other arrows;

• have labels on either or both sides, with adjustable positioning;

• have a variety of head, tail, and shaft styles.

The fancier arrow styles are made possible by special fonts, either from Xy-pic
or LamS-TEX, but the package can be used without them if necessary.

1

To get a feel for how the package works, here are some examples of com-
mands for producing arrows:

\arrow{e} + + + + +

+ + + + +

+ + + + +

\arrow[2]{ene,t,3,..}{f 0} + + + + +

-

?
\arrow{s,lr}{\alpha}{\beta} α β

p p p p p p p p p p
p p p p p p p p p p

p p p p p p p p p p
p p*

f0

And here is a simple example diagram:

A B∗ C

D E

-a

?

c

HHH
HHHHHHj

-b∗

?

d

����
������

-
e

\[

\begin{diagram}

\node{A} \arrow{e,t}{a} \arrow{s,l}{c} \arrow{ese}

\node{B^*} \arrow{e,t}{b^*}

\node{C} \arrow{s,r}{d} \arrow{wsw} \\

\node{D} \arrow[2]{e,b}{e} \node[2]{E}

\end{diagram}

\]

2

2 Loading the Diagram Package

To use the diagram environment, begin your LATEX2ε file with:

\documentclass{DOCSTYLE}\usepackage{pb-diagram}

where DOCSTYLE is your document style (e.g., article). The style file
pb-diagram.sty needs to be placed in one of your system’s TEX input di-
rectories.

If you are using older versions of LATEX (2.09 or older), then you would
begin instead with:

\documentstyle[pb-diagram]{DOCSTYLE}

If you have METAFONT available on your system, and would like to
make use of the additional features of the Xy-pic fonts (highly recommended!),
then you should instead begin your LATEX2ε file with:

\documentclass{DOCSTYLE}

\usepackage[cmtip,arrow]{xy}

\usepackage{pb-diagram,pb-xy}

This option requires that you have Xy-pic installed on your system. Xy-pic
is available from your nearest CTAN archive (e.g. http://ctan.tug.org/)
in the CTAN directory macros/generic/diagrams/xypic/.

An alternative set of fonts which enables some of the fancier features is
the LamS-TEX font set; to use it, begin your LATEX2ε file with:

\documentclass{DOCSTYLE}

\usepackage{pb-diagram,lamsarrow,pb-lams}

This option requires the METAFONT source files lams1.mf through lams5.mf

to be installed.
Installation of additional fonts is system-dependent, but will involve mov-

ing the .mf files into the system’s METAFONT input directory, and then
running the METAFONT program. This program will generate the .tfm files
required for TEX, and the .pk or .gf files required for printing and preview-
ing. On unix systems, the relevant files are typically located in /usr/lib/mf

and /usr/lib/tex, or /usr/local/lib/mf and /usr/local/lib/tex.
If you are having troubling getting LATEX to properly process an older

paper which uses this package, check the later section, “Upgrading Papers
from Previous Versions.”

3

3 Using the Diagram Environment

3.1 Overall Structure of the Environment

The diagram environment should be used in math mode only. Its usage is as
follows:1

\begin{diagram}

NODE ARROW ARROW ... NODE ARROW ARROW \\

NODE ARROW ARROW ... NODE ARROW ARROW \\

...

NODE ARROW ARROW ... NODE ARROW ARROW

\end{diagram}

Each NODE places a centered formula at a new grid point, and each ARROW

which follows this NODE (but precedes the next NODE) will be attached by its
tail to the same grid point. The diagram will be automatically be given a
geometry which accomodates these elements, but you can also fine-tune it
afterwards by hand if it didn’t turn out like you imagined (see the section
on “Fine-Tuning” below). We now explain how to specify the NODEs and
ARROWs.

3.2 Formula Nodes

A NODE is specified by the comand:

\node[NCOLS]{FORMULA}

where the optional argument NCOLS tells how many grid columns to move
forward from the previous node (the default is 1). The FORMULA is the math
mode material which you want to place at that node in the grid.

The \\ command moves to the next grid row. As is usual in LATEX arrays,
the final row should not end with a \\, and any blank columns at the end
of a row need not be entered. More generally, it is possible to move NROWS

rows down at once using the command:

\\[NROWS]

1For compatibility reasons, the diagram environment accepts and optional argument.
When this argument is supplied, the grid geometry is calculated in exactly the same way
as in version 1.0 of this package. Therefore, manuscripts written with version 1.0 require
no changes to be processed with version 5.0.

4

3.3 Arrows and their Embellishments

An ARROW is specified by the \arrow command, which may also be used
anywhere in math mode, independent of the diagram environment. Its usage
depends on the number of labels desired:

\arrow[SIZE]{DIRECTION,OPTIONS}

\arrow[SIZE]{DIRECTION,ONELABEL,OPTIONS}{LABEL}

\arrow[SIZE]{DIRECTION,TWOLABEL,OPTIONS}{LABEL1}{LABEL2}

The commas should not have any spaces before or after them, and there
should not be any extra spaces or commas at the beginning or end of the
list. The optional integer argument SIZE tells how many times its normal
length the arrow should be made. For example, \arrow[2]{e} will span two
columns, while \arrow[2]{s} will span two rows.

The arrow DIRECTION may be chosen from the compass point directions:

n,e,s,w,ne,nw,se,sw,nne,nnw,sse,ssw,ene,ese,wnw,wsw

If the pb-lams style has been loaded, the DIRECTION may also be chosen
from this list:

nee,see,nww,sww,

neee,nnne,nnnw,nwww,swww,sssw,ssse,seee,

nnnee,nnnww,sssww,sssee,nneee,nnwww,sswww,sseee

(For more information about arrow directions, see the sections on “Fine
Tuning” and “Customizing” below.)

Any LABELs present are math mode material. The ONELABEL specifier
may be chosen from:

t top
b bottom
l left (only for use with vertical arrows)
r right (only for use with vertical arrows)

The TWOLABEL specifier may be chosen from:

tb top and bottom
lr left and right (only for use with vertical arrows)

5

The OPTIONs describe the style of the arrow shaft, the symbols to be used
at the head and tail of the arrow, and the positions of the labels. The defaults
are: a simple line shaft, a single simple arrowhead, no special tail symbol,
and labels positioned at the midpoint of the arrow shaft. The OPTIONs may
be selected from the lists which follow. Most of the options can be combined
with others; however, not all combinations make sense. In addition, options
marked with (*) are only available with either pb-xy or pb-lams loaded; and
options marked with (**) are only available with pb-xy loaded. Shaft options
are:

.. dotted or dashed arrow shaft
= double line shaft* (“equals sign”)
! invisible arrow shaft

Arrow head options are:

- no arrow heads
<> arrow heads on both ends
A double arrow head*
’ left half of arrow head*
‘ right half of arrow head*

Arrow tail options are:

V single arrow tail*
J left fish hook arrow tail*
L right fish hook arrow tail*
S squiggle arrow tail*
T “mapsto” arrow tail**

In the default configuration, the label positioning options are:

1 1/4 of way from tail end
2 2/4 of way from tail end (the default)
3 3/4 of way from tail end

However, if more flexibility is needed, there is an ARROWPARTS parameter
which specifies how many pieces the arrow will be divided into to determine
the meaning of the label positioning option. (In general, the positioning
option may be any single digit.) For example, to position a label 5/6 of the
way from the tail end of the arrow, you would use commands like these:

6

\dgARROWPARTS=6

\begin{diagram}

... \arrow{e,t,5}{MYLABEL} ...

\end{diagram}

ARROWPARTS should be even, so that ordinary labels can be properly posi-
tioned at the half-way point.

4 Fine Tuning the Diagrams

Many of the parameters used by the diagram environment are accessible to
you and documented here so that the existing features can be fine-tuned.

The most important parameter is \dgARROWLENGTH, which specifies the
minimum length for all arrows. The diagram environment will independently
adjust the horizontal and vertical scales of its rectangular grid until at least
that much room is available for each arrow. This calculation takes into
account the room that must be set aside for the each of the two formulas
being connected by an arrow. The default minimum arrow length is

\dgARROWLENGTH=2.5em

The \arrow command may also be used outside of the diagram environment;
in that case, its length is instead controlled by the parameter

\dgTEXTARROWLENGTH=1.1em

Some anomalies you may encounter: the collision of formulas is not
checked unless an arrow connects them. Therefore, if two formulas turn
out to overlap you can just connect them with an invisible arrow.

7

Another problem may occur when you simulate “arrow fragments” using a
finer grid. The arrow-length checker does not know what is a “fragment” and
so it will force each fragment to be \dgARROWLENGTH long. The easiest way
to fix this is to locally divide \dgARROWLENGTH by the scale factor between
the coarse and fine grids. For example:

\divide\dgARROWLENGTH by2

\begin{diagram}

\node[2]{A}\arrow[2]{s}\\

\node{B}\arrow{e,-} \node{}\arrow{e,t}{\alpha} \node{C}\\

\node[2]{D}

\end{diagram}

A

B C

D
?

-α

The space set aside for a formula further includes padding to keep the
arrows from actually touching the formulas. The padding increases the ap-
parent horizontal size of each formula by \dgHORIZPAD and the apparent
vertical size by \dgVERTPAD. The default values of these parameters are:

\dgHORIZPAD=1em

\dgVERTPAD=2ex

The ratio of the horizontal and vertical scales of the grid, known as the
aspect ratio, cannot be completely arbitrary because of the slope limitations
of font-based arrows. In order that the full required set of compass-point
directions be available, the optimal calculated aspect ratio will be approxi-
mated so as to be compatible with the available fonts. In plain LATEX mode
the possibile aspect ratios are half-integers up to 2, while in LamS-TEX mode
they are half-integers up to 3.

\dgLABELOFFSET is the (approximate) distance which will separate labels
from their arrows. An arrow is divided into \dgARROWPARTS parts for custom
positioning of labels along the arrow (the only sensible choices for this number
are 2,4,6,8,10). By default,

\dgLABELOFFSET=.7ex

\dgARROWPARTS=4

8

The following two parameters regulate the appearance of dotted arrows
in plain LATEX mode:

\dgDOTSPACING=0.35em

\dgDOTSIZE=1.5\fontdimen8\tenln

By default, nodes are typeset \displaystyle, and labels \scriptstyle.
This is controlled by the commands \dgeverynode (which is executed prior
to the formula of each node) and \dgeverylabel (which is executed prior to
the formula of each label). They can be changed with \renewcommand, like
this:

\renewcommand{\dgeverynode}{\displaystyle}

\renewcommand{\dgeverylabel}{\scriptstyle}

These commands may alternatively be defined to take one argument, which
will be the content of the node or label.

5 Customizing the Package

The diagram environment was designed in a modular way to make it easy
to add features.

To add a new option to the \arrow command—say **—you need only
define a command named \dgo@** which sets the desired parameters. Let’s
say you want the ** option to make \arrow use a custom arrow design of
yours. Since \dg@VECTOR is the parameter that governs the arrow-drawing
code, you would say

\@namedef{dgo@**}{\let\dg@VECTOR=\myamazingvector}

where \myamazingvector is your custom arrow code (analogous to LATEX’s
\vector command). Note that if this definition is not in a style file, it needs
to be bracketed with \makeatletter...\makeatother. You can then use
your custom arrow style like any other option:

\arrow{sw,t,**}{\Gamma}

Adding new arrow direction codes is done by defining commands of the
form \dgt@DIRCODE. These commands set \vector-like parameters to specify
the arrow direction (thinking of the arrow as laid out on a grid where the
basic rectangle is unit wide and one unit high). For example:

9

\@namedef{dgt@sse}{\dg@DX=1 \dg@DY=-2 \dg@SIZE=1 }

You can also customize the way the grid geometry is computed by re-
defining the \dggeometry command. It must set the integer parameters
\dg@XGRID and \dg@YGRID and the length parameter \unitlength. Each
grid rectangle will then be 1000\dg@XGRID by 1000\dg@YGRID \unitlengths
in size. The assigned values of \dg@XGRID and \dg@YGRID should be smallish
numbers (to avoid arithmetic overflow) with XGRID:YGRID as the desired as-
pect ratio. As inputs, you should use the pre-supplied values of \dg@XGRID
and \dg@YGRID, which are the calculated minimum width and height that
grid rectangles must have, measured in scaled points (sp).

In plain LATEX mode, the aspect ratio must be a half-integer between 1
2

and 2 (or the inverse of such) in order to support the basic 16 compass
directions. In LamS-TEX mode, the aspect ratio need only be a half-integer
between 1

2
and 3 in order to support these same basic directions; and when

the aspect ratio is chosen from these values, almost all the arrow directions
(p, q) with max(|p|, |q|) ≤ 3 are supported. The exceptions are that arrows
of type (±3, ±2) are only rendered approximately in some aspect ratios, and
that arrows of type (±3, ±1) are not supported unless the aspect ratio is a
half-integer between 1

2
and 2. The \dggeometry macro for LamS-TEX mode

automatically detects when it needs to restrict the aspect ratio because of a
type (±3, ±1) arrow in the diagram.

6 Upgrading Papers from Previous Versions

Some slightly incompatible changes have been made during the evolution of
this package.

Beginning with version 3.5, the files and names of the packages were
reorganized to simplify electronic publication. Here is a dictionary to make
the translation:

Old Packages New Packages
diagram pb-diagram

lamsarrow,diagram pb-diagram,lamsarrow,pb-lams

The order of the packages must be as shown in the table.
Beginning with version 4.0, a bug which caused occasional diagrams to

come out twice too large was eliminated. If you have an old paper which was

10

tuned for the earlier geometry calculation, you can get the previous behavior
back by including the command \let\dggeometry=\dgoldgeometry in the
document’s preamble.

7 Implementation Notes

All command names defined in the pb-diagram.sty style file begin with
“\dg”, except \diagram, \enddiagram, \node, \arrow, \\, and the LATEX
enhancements \newoptcommand, \newoptenvironment, \renewoptcommand,
and \renewoptenvironment. All private commands contain an ‘@’ in their
names. The commands \node and \\ are only defined within the diagram

environment. Spaces following the \end{diagram} are ignored.
In all the macro files in this package, lines have been limited to less than 70

characters to avoid problems with electronic mailing.

8 Copyright and Acknowledgments

The pb-diagram package is copyright c© 1990, 1992, 1995, 1998 by Paul
Burchard.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

The file pb-xy.sty is copyright c© 1998 by Bill Richter, and is also dis-
tributed under the terms of the GNU General Public License.

The fonts lams1.mf through lams5.mf, as well as the macros in lamsarrow.sty,
are copyright c© 1989, 1990, 1991 by The Texplorators Corporation, 1572
West Gray #377, Houston, TX 77019–4948. Beginning with version 4.1 of
this package, the fonts include a patch by Ingo Hadan which makes them

11

compatible with recent versions of cmbase.mf, and in particular, eliminating
a division-by-zero error that caused certain glyphs to appear wildly deformed.

I would like to acknowledge inspiration from a macro package of Marc-
Paul van der Hulst. Bill Richter was of major help to me with his topological
torture-testing of this package, and he provided some spectacular example
diagrams for distribution with this package. Dan Christensen made many
good suggestions which were incorporated into version 4.0.

12

