
The logicproof package

Alan Davidson
alan.davidson@gmail.com

20 March 2014

1 Introduction

This package provides support for Fitch-style box proofs, intended to be used for
proofs in predicate logic and first order logic. In this proof style, each statement
of the proof is accompanied by a justification, and subproofs or lemmata within a
larger proof are enclosed in boxes to separate them from the rest of the proof.

2 Usage

The logicproof environment takes a single argument, which should be a non-logicproof

negative integer describing the maximum number of nested subproofs that this
proof will contain. Each line of the proof consists of two main columns: the proof
statement of the current line, followed by an ampersand (&), followed by the jus-
tification for the statement. Lines should be separated from each other by a \\.
The column of proof statements defaults to math mode, while the justification
column defaults to normal text.

If you add a \label within a proof, the corresponding \ref will be the current
line number.

Within these logic proofs, it is often necessary to make subproofs which beginsubproof

by making some sort of assumption that does not necessarily hold in the broader
proof. To delineate the scope of these assumptions, use the subproof environ-
ment, which will draw a box around the statements of the proof for which these
assumptions should hold. Subproofs can be nested within each other, up to the
maximum level provided as an argument to the logicproof environment.

Within a subproof, the format of each line is exactly the same as in the
logicproof environment: a proof statement, followed by an ampersand (&), fol-
lowed by a justification for the statement, with \\ at the end of every line except
the last one (which instead ends with \end{subproof}).

If a statement has an empty justification, it is still important to put in the &

to separate out the column in which the justification would go, or else the right
sides of the subproof boxes will be misaligned for this statement.

The previous line before a subproof begins should end in either \\ or
\end{subproof}.

1

A warning for advanced LATEX users: although most environments make their
own groups (such that changes made within an environment go out of scope at
the end of it), the subproof environment does not! Any changes made within a
subproof environment will not go out of scope until the enclosing logicproof

environment ends. This was done because groups cannot cross alignment tabs,
but the subproof environment needs to use the same alignment as the enclosing
logicproof environment does (or else they won’t line up together). An inconve-
nient side effect of this is that when you forget to put in a \end{subproof}, the
error message about mismatched environments points to the line number where the
enclosing logicproof environment started, rather than the offending subproof

environment.

3 Example

This example proves the validity of the sequent (p ∨ q) ∨ r ⊢ p ∨ (q ∨ r). There
are many different styles that can be used for the justification of each step; we
are using the style found in Logic in Computer Science: Modelling and Reasoning
about Systems by Huth and Ryan.

\begin{logicproof}{2}

(p\lor q)\lor r & premise\\

\begin{subproof}

(p\lor q) & assumption\\

\begin{subproof}

p & assumption\\

p\lor (q\lor r) & $\lor\mathrm{i}_1$, 3

\end{subproof}

\begin{subproof}

q & assumption\\

q\lor r & $\lor\mathrm{i}_1$, 5\\

p\lor (q\lor r) & $\lor\mathrm{i}_2$, 6

\end{subproof}

p\lor (q\lor r) & \lore, 2, 3--4, 5--7

\end{subproof}

\begin{subproof}

r & assumption\\

q\lor r & $\lor\mathrm{i}_2$, 9\\

p\lor (q\lor r) & $\lor\mathrm{i}_2$, 10

\end{subproof}

p\lor (q\lor r) & \lore, 1, 2--8, 9--11

\end{logicproof}

This compiles into the following:

2

1. (p ∨ q) ∨ r premise

2. (p ∨ q) assumption

3. p assumption

4. p ∨ (q ∨ r) ∨i1, 3
5. q assumption

6. q ∨ r ∨i1, 5
7. p ∨ (q ∨ r) ∨i2, 6
8. p ∨ (q ∨ r) ∨e, 2, 3–4, 5–7
9. r assumption

10. q ∨ r ∨i2, 9
11. p ∨ (q ∨ r) ∨i2, 10
12. p ∨ (q ∨ r) ∨e, 1, 2–8, 9–11

4 Advanced Configuration

There are two lengths that can be configured manually if desired.
The horizontal distance between the sides of nested boxes is the length stored in\subproofhorizspace

\subproofhorizspace. If you have many nested subproofs, it might be desirable
to make this space larger so that it is easier to distinguish between them.

An extra vertical space of length \intersubproofvertspace is added after\intersubproofvertspace

each statement in the proof. The intention here is to have this much space be-
tween consecutive subproofs. This is to say, when one subproof ends and the next
subproof begins immediately, this is the distance between the bottom edge of the
ending subproof and the top edge of the beginning subproof. This space is inserted
after each line, however, so that the vertical spacing between them is consistent
regardless of whether subproofs are begun or ended. If you want more compact
proofs and you never use consecutive subproofs, it might be useful to reduce or
remove this extra space.

5 Constraints

The environments in this package might not work properly if any of the following
constraints are violated. These should not be difficult burdens; they are listed
here mainly for completeness.

• Each proof and each subproof must be at least 1 statement long.

• Each subproof must start with at least 1 statement before containing another
subproof inside itself. You should not have a subproof that immediately
begins with a nested subproof.

• The end of each subproof must have at least 1 statement (or a new subproof)
following it; a single proof statement cannot end multiple subproofs at once.

3

Consequently, the last statement of the top-level proof must be outside of
all subproofs. It is okay to immediately start a new subproof after ending a
previous subproof.

6 Summary of Implementation

The logicproof environment is built on the tabular environment. It has a
column for the line number, a column for each possible nested subproof, a column
for the statement, a column for the justification, and then a second column for
each possible nested subproof. The columns corresponding to nested subproofs
either contain a \vline if the subproof is currently being used, or nothing if the
subproof is not being used. When a subproof is begun or ended, a \cline is used
to draw horizontal lines between the columns corresponding to that subproof. In
order to prevent multiple \cline’s from overlapping when one subproof is ended
and another is immediately begun, each statement in the proof actually ends
with a negative vertical space backing up to the previous line, then a space down
\intersubproofvertspace and a redrawing of the subproof lines again to cover
the extra space.

7 Implementation

1 \RequirePackage{array}

2 \RequirePackage{ifthen}

\subproofhorizspace

\intersubproofvertspace

We allow the user to configure the horizontal and vertical distance between the
edges of the boxes.

3 \newlength{\subproofhorizspace}

4 \setlength{\subproofhorizspace}{0.5em}

5 \newlength{\intersubproofvertspace}

6 \setlength{\intersubproofvertspace}{0.333em}

We use a variety of counters to keep track of the state.

7 \newcounter{lp@line}% Current line number on the proof

8 \newcounter{lp@nested}% Number of nested subproofs we’re currently in

9 \newcounter{lp@total@nests}% Maximum number of nested subproofs allowed

10 \newcounter{lp@cline@1}% Used to draw horizontal lines in subproofs

11 \newcounter{lp@cline@2}% Also used to draw horizontal lines in subproofs

12 \newcounter{lp@temp}% Temporary storage counter

logicproof Use this to make a propositional logic proof. The argument it takes is the maxi-
mum number of nested subproofs you will use.

13 \newenvironment{logicproof}[1]{%

14 \setcounter{lp@line}{0}%

15 \setcounter{lp@nested}{0}%

16 \setcounter{lp@total@nests}{#1}%

17 \setlength{\tabcolsep}{0mm}%

4

When using the array package, the tabular environment contains the statement
\let\\\@arraycr (note that with the array package, \@tabularcr is replaced
with \@arraycr even within the tabular environment). So, to modify the behavior
of \\, we’re actually going to modify \@arraycr. Save a copy of the original
definition first, so that we can use it inside our new definition. Remember that
when the logicproof environment finishes, this redefinition will go out of scope
and revert to the previous version, so we won’t ruin any future uses of the tabular
environment.

18 \let\lp@orig@arraycr\@arraycr%

19 \renewcommand{\@arraycr}{\lp@cr}%

Get labels to work in proofs by defining \@currentlabel to always be the line
number, regardless of where we are in the proof. Note that the usual approach of
using \refstepcounter{lp@line} doesn’t work because it goes out of scope by
the time we get to the next cell in the tabular environment.

20 \renewcommand{\@currentlabel}{\p@lp@line\thelp@line}%

If the maximum number of nested subproofs is 0, we need a slightly different
column format, because the array environment doesn’t like it when you repeat a
formatting group 0 times.

21 \ifthenelse{%

22 0=#1%

23 }{%

24 \def\lp@tab@format{{r@{~~~}>{$}l<{$}@{~~~~}l}}%

25 }{%

Although we could use the array package’s >{...} and <{...} features to have
automatic placement of the vertical lines on the sides of subproofs, we would not
be able to get the horizontal lines at the tops and bottoms of the subproofs to
line up properly. Consequently, we go with the “old school” approach of putting
subproofs in their own columns, so that we can use \cline to put the horizontal
lines in their proper places.

26 \def\lp@tab@format%

27 {{r@{~~~}*{#1}{l}@{~}>{$}l<{$}@{~~~~}l@{~}*{#1}{r}}}

28 }%

29 \center%

We use the tabular environment instead of the array environment because we
want to be able to have labels on individual lines. Since the entirety of the array
environment is in math mode, it does not support more than one label per array.

30 \expandafter\tabular\lp@tab@format%

31 \lp@start@proof@line%

32 }{%

33 \lp@stop@proof@line%

34 \endtabular%

35 \endcenter%

To ensure that no one tries using the subproof environment outside of the log-
icproof environment, set the maximum number of nested subproofs to 0.

36 \setcounter{lp@total@nests}{0}%

5

Finally, make sure that all open subproofs have been closed. We do this last
because if a subproof is still open, we need to set \@currenvir properly for \end
to check and throw errors on, but previous commands have \endgroup’s that make
it revert to previous definitions.

37 \ifthenelse{%

38 0=\value{lp@nested}

39 }{% All is well.

40 }{% There are still open subproofs.

41 \def\@currenvir{subproof}%

42 }

43 }

subproof This environment puts a box around the lines of the proof within it. It should
come right after either a \\ or a \end{subproof}.

44 \newenvironment{subproof}{%

Make sure we don’t start more nested subproofs than the current logicproof envi-
ronment can handle.

45 \ifthenelse{%

46 \value{lp@total@nests}>\value{lp@nested}%

47 }{% All is well; don’t do anything.

48 }{%

49 \PackageError{logicproof}{Too many nested subproofs!}{%

50 Increase the maximum number of nested subproofs allowed

51 in the current logicproof environment.%

52 }%

53 }%

The \begin and \end parts of an environment start and end a group, so that
macros defined within them have local scope. However, a group cannot cross
alignment tabs (&’s), which means that this subproof environment, which must
cross them, needs to get rid of those extra groups first. So, we immediately end
the group that \begin created before going on with the subproof. Note that this
means any redefinitions of any macros we might have will persist outside this
subproof and will not go out of scope until the entire logicproof environment is
over. Note also that this approach is slightly brittle: if the implementation of
\begin and \end ever changes, this subproof environment is likely to break.

54 \endgroup%

55 \lp@stop@proof@line%

Ideally, we’d use \lp@extend@space here. However, we first need to end the
current line, which means putting in \lp@orig@arraycr and then going up an
extra line in the tabular environment via \lp@add@space.

56 \lp@orig@arraycr%

57 \lp@add@space%

58 \lp@go@up@a@line%

59 \stepcounter{lp@nested}%

60 \lp@cr@clines%

6

The current line number was added in before this subproof was started. Do not
add it in again now; just skip over the line number entry and go straight on to the
subproof-drawing stuff.

61 &%

62 \lp@continue@proof@line%

63 }{%

If we try ending a subproof that has not yet begun, we will run into trouble with
\cline trying to draw a horizontal line to a column past the end of the tabular
environment. This happens before \end actually checks whether we’re ending the
right environment. In order to get a more useful error message, we first check that
there is at least 1 open subproof.

64 \ifthenelse{%

65 0<\value{lp@nested}%

66 }{% All is well; don’t do anything.

67 }{%

68 \PackageError{logicproof}{Cannot end a subproof before it begins}{%

69 You must have a \protect\begin{subproof} before you can use %

70 \protect\end{subproof}.%

71 }%

72 }%

73 \lp@stop@proof@line%

74 \lp@cr@clines%

75 \addtocounter{lp@nested}{-1}%

76 \lp@extend@space%

77 \lp@start@proof@line%

Now that we’re done with the subproof, we need to create a group because \end

is expecting us to still be in the group that was started in \begin. We also must
redefine \@currenvir within that group, or the error-checking in \end will think
we’ve ended the wrong environment (its previous redefinition went out of scope
when we ended the group created by \begin).

78 \begingroup%

79 \def\@currenvir{subproof}%

80 }

\lp@cr This is what the \\ will be defined as inside the logicproof environment.

81 \newcommand{\lp@cr}{%

82 \lp@stop@proof@line%

83 \lp@orig@arraycr%

84 \lp@extend@space%

85 \lp@start@proof@line%

86 }

\lp@go@up@a@line This moves up one entire line in the proof.

87 \newcommand{\lp@go@up@a@line}{%

88 \vspace{-\ht\@arstrutbox}%

89 \vspace{-\dp\@arstrutbox}%

90 \vspace{-\intersubproofvertspace}%

91 }

7

\lp@add@space Extends the vertical lines at the sides of the proof down slightly, so that the
horizontal lines at the end of the previous subproof and the start of the next one
don’t overlap. This basically inserts a blank row in the proof (no line number, no
statement, no justification; just the subproof lines), then backs up part of a line.

92 \newcommand{\lp@add@space}{%

93 \lp@extend@space%

The \@arstrutbox is a box containing the minimum array height. Remember
that the height of the strut is spread between the height above the baseline and
the depth below it!

94 \vspace{-\ht\@arstrutbox}%

95 \vspace{-\dp\@arstrutbox}%

Uncommenting this would line things up exactly where they started.

96 %\vspace{-\intersubproofvertspace}%

97 }

\lp@extend@space This extends the vertical lines at the sides of the subproofs down by an extra
\intersubproofvertspace. This is done so that two subproofs in a row don’t
have their horizontal lines overlap each other.

98 \newcommand{\lp@extend@space}{%

99 \vspace{-\ht\@arstrutbox}%

100 \vspace{-\dp\@arstrutbox}%

101 \vspace{\intersubproofvertspace}%

Now, insert a row that has vertical lines for the subproofs but no line number,
proof statement, or justification.

102 &%

103 \lp@continue@proof@line%

104 &%

105 \lp@stop@proof@line%

106 \lp@orig@arraycr%

107 }

\lp@amper You can’t have a & in a \whiledo loop, but this works instead.

108 \newcommand{\lp@amper}{&}

\lp@start@proof@line This macro does everything on a proof line before the statement itself: it incre-
ments and prints the line number, then calls \lp@continue@proof@line to put
in the vertical lines of any subproofs we’re currently in.

109 \newcommand{\lp@start@proof@line}{%

We use \stepcounter instead of \refstepcounter here because the changes made
by \refstepcounter to how labels get made would go out of scope by the time we
got to the next cell of the tabular environment (i.e., 2 lines from here). Instead, we
redefined \@currentlabel at the beginning of the environment to always contain
the current value of the lp@line counter.

110 \stepcounter{lp@line}%

111 \arabic{lp@line}.%

8

112 &%

113 \lp@continue@proof@line%

114 }

\lp@continue@proof@line This macro makes the vertical lines of the subproof boxes on the left side of the
proof (i.e., the ones that come between the line numbers and the proof statements).
We use \lp@amper here because the raw & token doesn’t play well with \whiledo

loops.

115 \newcommand{\lp@continue@proof@line}{%

116 \setcounter{lp@temp}{0}%

117 \whiledo{\value{lp@temp}<\value{lp@nested}}{%

118 \vline%

119 \hspace*{\subproofhorizspace}%

120 \lp@amper%

121 \stepcounter{lp@temp}%

122 }%

123 \whiledo{\value{lp@temp}<\value{lp@total@nests}}{%

124 \hspace*{\subproofhorizspace}%

125 \lp@amper%

126 \stepcounter{lp@temp}%

127 }%

128 }

\lp@stop@proof@line This macro makes the vertical lines of the subproof boxes on the right side of the
proof (i.e., the ones that come after the justifications for each step). It basically
does the same thing as \lp@continue@proof@line, but in reverse order. We use
\lp@amper here because the raw & token doesn’t play well with \whiledo loops.

129 \newcommand{\lp@stop@proof@line}{%

130 \whiledo{\value{lp@temp}>\value{lp@nested}}{%

131 \addtocounter{lp@temp}{-1}%

132 \lp@amper%

133 \hspace*{\subproofhorizspace}%

134 }%

135 \whiledo{\value{lp@temp}>0}{%

136 \addtocounter{lp@temp}{-1}%

137 \lp@amper%

138 \hspace*{\subproofhorizspace}%

139 \vline%

140 }%

141 }

\lp@subtract@from@counter Subtraction by a value in another counter is annoying, but with this we can use
\expandafter and make it easier.

142 \newcommand{\lp@subtract@from@counter}[2]{%

143 \addtocounter{#2}{-#1}%

144 }

\lp@set@clines This macro sets up where the horizontal bars go for subproofs.

145 \newcommand{\lp@set@clines}{%

9

lp@cline@1 = lp@nested + 1

146 \setcounter{lp@cline@1}{\value{lp@nested}}%

147 \stepcounter{lp@cline@1}%

lp@cline@2 = 2 * lp@total@nests + 4 - lp@nested

148 \setcounter{lp@cline@2}{\value{lp@total@nests}}%

149 \addtocounter{lp@cline@2}{\value{lp@total@nests}}%

150 \addtocounter{lp@cline@2}{4}%

Subtracting one counter from another is tricky. We need to expand the value of
the counter being subtracted first.

151 \expandafter\lp@subtract@from@counter\expandafter{%

152 \value{lp@nested}}{lp@cline@2}%

153 }

\lp@cr@clines This macro goes to the next line of the tabular environment and puts in a hori-
zontal line for the beginning or end of the current subproof.

154 \newcommand{\lp@cr@clines}{%

155 \lp@set@clines%

We put the \lp@orig@arraycr here instead of in \lp@stop@proof@line because
\cline doesn’t seem to work properly unless it’s right after the carriage return.
Even moving it up above \lp@set@clines on the previous line messes it up.

156 \lp@orig@arraycr%

157 \cline{\value{lp@cline@1}-\value{lp@cline@2}}%

158 }

10

