
ktv-texdata package

Kỳ Anh
(kyanh@inic.biz, kyanh@linuxmail.org)

package: version 05.34, last update 2003/10/06
documentation: version 1544, last update 2003/11/20

Abstract

This package provides a simple way to use the TEX input files whose
contents are in the numbered environments.

This package is useful for the teachers of mathematics, who often
work with large libraries of mathematical exercises.

Contents

1 How will you do? 2

2 Introduction 3
2.1 Convention . 3
2.2 Data item ‘bxx’ . 3

2.2.1 Form . 3
2.2.2 Meaning . 4
2.2.3 Identifying the ‘bxx’ . 4

2.3 Data file. Example . 4

3 User’s macros 5
3.1 Turning on/off the detail(s) . 5
3.2 Specifying the default environment 5
3.3 Getting/Ignoring the ‘bxx’ . 5
3.4 Openning the data file . 7
3.5 Specifying the default data file . 7
3.6 Getting orderly the data items . 7

4 Advanced features 8
4.1 Enabling/Disabling section in data file 8
4.2 Data item followed by ‘hint’ environment 8

5 Important notes (to the users) 9

6 Generating package and example 9

1

7 Implementation 10
7.1 Notes . 10
7.2 Requirements. Options . 10
7.3 General purpose macros . 10
7.4 Scanning and setting flag for string-id 10
7.5 Extracting ID from the #ID-list 12
7.6 Comment creator macro . 13
7.7 Hint file. Hint creator environment 13
7.8 Replacements of macro \bxx . 14
7.9 Getting information from ‘bxx’ . 16
7.10 Typesetting the content of ‘bxx’ 18
7.11 Actions affect on the string-id . 19
7.12 Openning the data file . 20
7.13 User’s macros . 20
7.14 Initialization . 22

8 History 23

9 Miscellanea 23

References 24

1 How will you do?

Assume that you have an input file (named ‘foo.tex’) that specifies 16 exercies

% --- first line of ‘foo.tex’

\begin{exercice}\label{ex:1}

This is the first exercice.

\end{exercice}

\begin{exercice}\label{ex:2}

This is the second exercice.

\end{exercice}

...

\begin{exercice}[*]\label{ex:16}

This is the 16th exercice

(with a star mark *).

\end{exercice}

% --- last line of ‘foo.tex’

On Tuesday, for e.g., you want to create a student test that contains the first 8
exercises of the ‘foo.tex’. However, on Wednesday, you want to create another
test that contains the last 8 exercises of the ‘foo.tex’.

2

Of course, the simplest way to do that is copying and pasting. Of course, this
way becomes too complex in case, for e.g., you need only the exercies that are
numbered oddly (1, 3, 5, 7, 9, 11, 13, 15).

You may think of a solution like this

\getonly{1,2,3,4,5,6,7,8} % on Tuesday

\getonly{9,10,11,12,13,14,15,16} % on Wednesday

\getonly{1,3,5,7,9,11,13,15} % on Friday

Yes, here we go....

2 Introduction

2.1 Convention

Instead of using #1, #2, etc., to specify the first, the second,... parameter or
argument of a macro, we will use #foo, #xfoo,... where #foo is a short description
of #1, and #xfoo is a short description of #2, etc.

Parameter is something declared in the macro’s definitons.
Argument is something you pass to a macro when you call it.
The optional parameters are enclosed in the brackets (‘[’ and ‘]’).

2.2 Data item ‘bxx’

2.2.1 Form

Each ‘bxx’, or a data item, is of the form

\bxx(#env)[#thm]ID;
something to typeset
\exx

Note that ‘\exx’ must be located at the beginning of a new line
and the semicolon ‘;’ is mandatory.

ID is any non-empty string of characters, numbers or punctuations:ID

ID −→ char-num / xpunct / ID ID
char-num −→ a..z / A..Z / 0..9
xpunct −→ : / . / ,

For example, ‘ex:1’, ‘Ex:2003’ are the IDs, but ‘ex;1’ isnot.
#env is any predefined environment. Parameter (#env) is optional.#env

#thm is the optional argument for the environment #env. It is also the optional#thm

parameter for the macro \bxx, because it is enclosed in the brackets; so you can
specify a ‘bxx’ like this

\bxx(#env)ID;
something to typeset
\exx

3

or more simply (because (#env) is optional)

\bxx ID;
something to typeset
\exx

2.2.2 Meaning

What does ‘bxx’ mean?\bxx

\exx Yes, it’s very familar with \begin{#env} and \end{#env}.

\bxx(#env)[#thm]ID; means \begin{#env}[#thm]
something to typeset means itself

\exx means \end{#env}

2.2.3 Identifying the ‘bxx’

We use ID and #env to identify a ‘bxx’ by associating that ‘bxx’ with the string
#envID. This string is named string-id of the ‘bxx’. Then two ‘bxx’s are different
if their string-ids are different. For e.g., after the declaration

\bxx(exercise)100;

...

\exx

the string-id of the ‘bxx’ is ‘exercise100’.

2.3 Data file. Example

An input file containing one or more ‘bxx’ is called a data fille. Using the ‘bxx’,
we reedit the ‘foo.tex’ in the first section. Then, ‘foo.tex’ becomes a data file.

% --- first line of the new ‘foo.tex’

\bxx(exercice)ex:1;

\label{ex:1}

This is the first exercice.

\exx

\bxx(exercice)ex:2; \label{ex:2}

This is the second exercice.

\exx

...

\bxx(exercice)ex:16;\label{ex:16}

This is the 16th exercice.

\exx

% --- last line of the new ‘foo.tex’

4

3 User’s macros

3.1 Turning on/off the detail(s)

Syntax\xdetailon

\xdetailoff
\xdetailon
\xdetailoff

By default, the package shows string-id of the ‘bxx’ you want to get on the
margin. You can turn this feature on/off by these marcos. The macros can be put
anywhere in your document. See the package’s test for an illustration.

You can also pass an option to the package, like this

\usepackage[detailon]{ktv-texdata}, or
\usepackage[detailoff]{ktv-texdata}

3.2 Specifying the default environment

Syntax\xenv

\xenv(#env)

This macro specifies the default environment used for the macros ‘bxx’, ‘\xget’,
‘\xgetall’, etc. Here #env is any predefined environment.

This macro can be put anywhere. It keeps the effect until the next \xenv.

3.3 Getting/Ignoring the ‘bxx’

There are 7 macros used to get/remove the ‘bxx’ from the data file.

\xget \xgetall \xgetallbut
\xkill \xkillall \xkillallbut

\xspec

The macro \xspec is described in subsection 3.6.
Syntax\xgetall

\xkillall
\xgetall
\xkillall

\xgetall means that you want to get all the data items from the data file, while
\xkillall means that you want to ignore all.... These macros remove the effects
of any \xget, \xkill that is called before them.

Syntax\xget

\xget(#env){#ID-list}

where

• #env is an environment name. The parameter (#env) is optional.

5

• #ID-list is a list of IDs that’re seperated by the comma (‘,’), each ID can
be prefixed by a plus sign (‘+’) or by a minus sign (‘-’).

For e.g., the specification

\xget(exercise){-12,-3,+5,6,-99,+100}

means that you want to get from the data file all the ‘bxx’s whose string-ids are

exercise5, exercise6, exercise100

Because you specified -12, -3, -99, all the ‘bxx’ whose string-ids are exercise12,
exercise3, exercise99 are ignored. Of course, exercise7 is ignored, too.

:: TRICKTrick

The parameter (#env) is optional; so if you specified

\xenv(exercise)

then you can write shortly

\xget{-12,-3,+5,6,-99,+100}

:: TRICKTrick

A sequence of two \xgets can be replaced by one \xget, for e.g.,

\xget{1,6} \xget{3,-4} −→ \xget{1,6,3,-4}

The syntax and tricks are the same as \xget. Try to guess the usage of this\xkill

macro.
The syntax is the same as \xget.\xgetallbut

\xkillallbut The macro \xgetallbut means that you want to get all the data items but
the data items specified in the #ID-list.

Inversely, the macro \xkillallbut means that you want to ignore all the data
items but the data items specified in the #ID-list.

:: TRICKTrick

These macros are affected by \xget and \xkill. For e.g., the sequence

\xget{1,2,3} \xgetallbut{3,4,7}

will be understood as \xgetallbut{1,2,3,4,7}.
Here’re some other examples (may be useless for you)

\xget{1,2} \xgetallbut{2,3,4} −→ \xgetallbut{1,2,3,4}
\xkill{1,2} \xgetallbut{2,3,4} −→ \xgetallbut{2,3,4}
\xget{1,2} \xkillallbut{2,3,4} −→ \xkillallbut{1,2,3,4}

\xkill{1,2} \xkillallbut{2,3,4} −→ \xkillallbut{2,3,4}

\xgetallbut{2,3,4} \xget{1,2} −→ \xgetallbut{1,2,3,4}
\xgetallbut{2,3,4} \xkill{1,2} −→ \xgetallbut{3,4}

\xkillallbut{2,3,4} \xget{1,2} −→ \xkillallbut{1,2,3,4}
\xkillallbut{2,3,4} \xkill{1,2} −→ \xkillallbut{3,4}

6

3.4 Openning the data file

Syntax\xopenlib

\xopenlib foo;

where foo1 is a data file. The semicolon ‘;’ is mandatory.
The commands \xget, \xkill, etc., in the previous section play no rule with

the data file. They just tell \xopenlib that the ‘bxx’ should be got/ignored. It’s
\xopenlib that opens the data file, looks for the ‘bxx’ and does many other things.
So if you want to \xget{1,3,2}, the really code is

\xget{1,3,2} \xopenlib foo;

See subsection 3.5 for a trick.

3.5 Specifying the default data file

It’s convenient to specify a default data file. Let’s do it by\xlib

\xlib foo;

The file extension ‘.tex’ can be omitted.
:: TRICKTrick

After specifying the default data file, you can open that file by

\xopenlib;

3.6 Getting orderly the data items

Do you have any questions about the order of the ‘bxx’s?
Yes, if you had, the answer is: the calling of \xget, \xgetall, \xkill, etc.,

will produce the output in which the order of the data items is same as the order
of data items in the data file. More concretely, if in ‘foo.tex’ you specify

\bxx 15;

ITEMA.

\exx

\bxx 14;

ITEMB.

\exx

then \xget{14,15} \xopenlib foo;
or \xget{15,14} \xopenlib foo;
gives the same results: ‘ITEMA’ is put before ‘ITEMB’.

So we need the macro described below.
Syntax (same as \xget)\xspec

1The extension ‘.tex’ may be omitted, so \xopenlib foo; is the same as \xopenlib foo.tex;.

7

\xspec(#env){#ID-list}

(#env) is also an optional parameter.
This macro opens the data file (so you needn’t to specify a \xopenlib... after

it), extract the data items from the data file within the order in the #ID-list.
So if you want to put ‘ITEMB’ before the ‘ITEMA’ (see above example), you

should call

\xspec{14,15}

4 Advanced features

4.1 Enabling/Disabling section in data file

A data file may be divided into sections. But when looking for data file, this
package will be typeset normally anything that isnot inside any a ‘bxx’ (for e.g, a
\section command), so you can see some strange outputs.

Syntax\xenablesection

\xdisablesection
\xdisablesection
\xenablesection

The first macro disables three commands

\section \subsection \subsubsection

The second enables three above section commands by restoring them to the
values that this package captured at the beginning of the document. (So if
you redefine a section command inside \begin{document} and \end{document},
you may lost that new command after using the sequence \xdisablesection
\xenablesection.

NOTE:
\xdisablesection cannot disable the command

\section[optional]{...}

4.2 Data item followed by ‘hint’ environment

If a data item, or a ‘bxx’, in data file is an exercise, it is often followed by ahint

hint (a solution). All the hints should be collected in a private place. The ‘hint’
environment helps you in this behaviour. You put ‘hint’ just after the declaration
of a data item, like this

\bxx 100;

This is Exercise A

\exx

\begin{hint}

This is the hint of excercise A.

\end{hint}

8

When you get the above ‘bxx’, for e.g., by \xget{100}, the content of the hint,
here’s “This is the hint...” will be written automatically to a file called ‘hintfile’.

If you want to open the hint file, just call\xopenhint

\xopenhint

IF YOU WANT TO KNOW MORE...
The ‘hintfile’ is really a data file, whose name is

\jobname.KTVhint

\jobname is the name of current job, and ‘.KTVhint’ is the extension2 provided
by the author.

By default, all the contents of the ‘hintfile’ will be loaded (\xgetall).
It’s too complex to explain the structure of the ‘hintfile’. Let’s typset the

test, look for the ‘hintfile’ and the results for more details. Thank you!

5 Important notes (to the users)

a) (bug) You must put \xenv(#env) before any calling \xget, \xkill, etc.
Try this bug to know how the package works.

b) Donot put \xdisablesection just before \tableofcontents. (Otherwise,
an error will be reported.)

c) The environment(s) of the data items in the data file must be predefined.

d) \xopenhint should be called at the very end of the document, and must be
called after any \xspec, \xopenlib commands. (\xopenhint will closed the
‘hintfile’; after that the writting operations have no effect on this file.)

e) (bug) Labelling the ‘bxx’ maynot work well. If you try to load twice a ‘bxx’,
then two loadings will have a same label. In next version, we will redefine
the \label and \ref to fix this bug.

6 Generating package and example

Excuting

latex ktv-texdata.ins

to generate the package (ktv-texdata.sty) and a test (two files: ktv-test.tex;
ktv-data.tex). Then typeset file ktv-test.tex.

2If your system doesnot support the long extension file name, please report to the author.

9

7 Implementation

7.1 Notes

The implementation is the document used only by the package’s hacker!!!
This package is written by top-down technique: A macro \fooA sometimes

calls the macro \fooB whose the definitions appears after the defintions of \fooA.
This package uses some advanced and interesting macro techniques (unknown-

number-of-parameters-macro, two-optional-parameters-macro, and much more). If
you’re a newbie of LATEX programming, you will learn some new things by learning
the code of package.

7.2 Requirements. Options

1 〈∗package〉
2 \RequirePackage{verbatim}

\@@xdetail This macro shows string-id of the current ‘bxx’ on the margin.
3 \def\@@xdetail{\marginpar{{\bf\@xenv}\@xlbl}}

detailon detailon is the default option. Anything else means detailoff.
4 \DeclareOption{detailon}{\let\@xdetail\@@xdetail}

5 \DeclareOption*{\let\@xdetail\relax}

6 \ExecuteOptions{detailon}

7 \ProcessOptions

7.3 General purpose macros

\b@sy \b@sy means ‘not \relax’.
8 \def\b@sy{}

\if@xNIL Check if string #1 is empty.

9 \def\if@xNIL#1;{\ifx\relax#1\relax}

7.4 Scanning and setting flag for string-id

First, consider the example when the user calls

\xget(exercise){ex:1,-ex:3,ex:5,ex:7,ex:9,ex:11,ex:13,ex:15}

Here he (the user) wants to get the ‘bxx’ that is numbered oddly, and that uses
the environment ‘exercise’ from the data file (but he doesn’t want to get ex:3).

Because the number of exercises he wants to get is unknown (he just specifies
a list of the items he needs), we must design a macro that scans for all the items
in the list. Moreover, this macro will set the flag ‘get’ or ‘donotget’ for each item
(in the above example, the flag for ex:3 is ‘donotget’, for the others is ‘get’).

10

\usr@xenv

\usr@xlbl

These macros are used to store the result of the scanning.
10 \def\usr@xenv{}

11 \def\usr@xlbl{}

\@multact Scan and set the flag (get, donotget) for the items of a list. The syntax is

\@multact(#usr-env){#ID-list}

where #ID-list is a list of ID(s)3 that’re seperated by the comma (‘,’). Moreover,
each ID can be prefixed by a plus/minus sign (+, -).

#ID-list −→ XID / #ID-list, XID
XID −→ ID / +ID / -ID

If ID is prefixed by a + (resp., a -), it means that this ID has a ‘positive’ (resp.,
‘negative’) meaning4 in the current context. An ID without prefix is the same as
+ID.

The #usr-env is any environment (maynot be predefined). This #usr-env is
concatenated with every ID in the #ID-list. The concatenation will create the
string-id(s) for which we will later set the flag.

Here we use (#usr-env) instead of (#env) because the environment #usr-env
is used at the time the user wants to get some thing from the data file (for e.g., by
the command \xget{ex:1,ex:2}). This environment may be different from the
environment we specify in the data file, it maynot even be predefined.

Note that (#usr-env) is optional parameter of macro \@multact. In case that
(#usr-env) is omitted, #usr-env will get the default value saved in \@@xenv.
12 \def\@multact{\futurelet\@tchar\chk@multact}

We first check if the next char is a ‘(’.
13 \def\chk@multact{%

14 \ifx(\@tchar

15 \let\@txen\opt@multact

16 \else

17 \let\@txen\nop@multact

18 \fi

19 \@txen}

If the next char is a ‘(’
20 \def\opt@multact(#1)#2{%

21 \def\usr@xenv{#1}%

then read the #ID-list by calling \@xmultarg (see subsection 7.5 below)
22 \@xmultarg{#2}}

If the next char is not a ‘(’, \usr@xenv gets the default value
23 \def\nop@multact#1{%

24 \def\usr@xenv{\@@xenv}

3see subsection 2.2.1.
4If the user wants to get something, the + means ‘he wants’, but - means ‘he doesn’t want’.

If the user doesn’t want to get someting, the + means ‘no, he doesn’t want’, while the - means
‘yes, he wants’.

11

then read the #ID-list by calling \@xmultarg

25 \@xmultarg{#1}}

7.5 Extracting ID from the #ID-list

\@action \@action is something we want to affect each string-id5 found. We first let
\@action to \relax, so we avoid seeing the error ‘! Undefined control...’.
(This letting existed in some previous versions of package. Now the author does-
not know what’s going on if this line is removed!)
26 \let\@action\relax

\@@MINUS

\@@MINUS

\@@ZERO

There are three kinds of actions (plus action, minus action, and nosign ac-
tion). We’ll see in subsection 7.11 that every action is named ‘MINUSsomething ’,
or ‘ZEROsomething ’, or ‘PLUSsomething ’.
27 \def\@@MINUS{MINUS}

28 \def\@@PLUS{PLUS}

29 \def\@@ZERO{ZERO}

\@xmultarg \@xmultarg is used to extract the ID(s) from the #ID-list. Here we use the macro
technique specified in [VE]. First, we add to the argument #1 the terminator6

\@endlbl (‘@@@’). Then we call \@@xmultarg.
30 \def\@xmultarg#1{\@@xmultarg#1,@@@,}

31 \def\@endlbl{@@@}

\@@xmultarg Now is the extracting.
32 \def\@@xmultarg#1,{%

33 \def\@xtempi{#1}

34 \ifx\@endlbl\@xtempi

35 % do nothing

36 \else\@@@xmultarg#1,

37 \expandafter\@@xmultarg

38 \fi}

\@@@xmultarg Every ID extracted will be concatenated with the #usr-env to create the string-
id. The string-id will be affected by one of three actions (plus, minus or
nosign/zero). We first check the sign of the ID in the #ID-list.
39 \def\@@@xmultarg{\futurelet\@tchar\chk@@@xmultarg}

40 \def\chk@@@xmultarg{% 2003/05/14

41 \ifx-\@tchar\relax

42 \let\@txen\@@MINUS

43 \else\ifx+\@tchar\relax

44 \let\@txen\@@PLUS

45 \else

46 \let\@txen\@@ZERO

47 \fi

48 \fi

5string-id is created by concatenation #usr-env and ID. See subsection 2.2.3.
6Because that ‘@’ is never used to create an ID, the terminator ‘@@@’ works well.

12

To affect \@action on the string-id, we must specify ‘type’ of the action. The
type is saved in \@txen (see previous codes).
49 \csname\@txen\@action\endcsname}

7.6 Comment creator macro

\c@mm@nt If we donot want to get a ‘bxx’ from the data file, we just let temporarily macro
‘\bxx’ to ‘\c@mm@nt’. This macro scans and passes (or ignore) the input line by
line, until it finds the fisrt ‘\exx’. That’s why every ‘bxx’ must be ended by a
‘\exx’ in a single line! And that’s why ‘bxx’ cannot be nested!
50 \gdef\c@mm@nt{%

51 \begingroup

52 \catcode‘\^^M=12 %

53 \x@comment}

54 {\catcode‘\^^M=12 \endlinechar=-1 %

55 \gdef\x@comment#1^^M{%

56 \def\@xtest{#1}%

57 \ifx\@xtest\exx

58 \let\@txen=\endgroup

59 \else

60 \let\@txen\x@comment

61 \fi

62 \@txen}}

7.7 Hint file. Hint creator environment

An exercise, for e.g., may be followed by a hint (or a solution). In a test, a book
of excercises, all hints should be collected in a single file (named ‘hint file’) that
is genererated automatically by the package. The hint file is also a data file;
of course, it contains only the hint that follows the ‘bxx’ we want to get from the
data file (the active ‘bxx’s).

Because a hint sometimes will be disabled, we need a boolean test \if@xhint.
63 \newif\if@xhint

The name of hint file is ‘\jobname.KTVhint’.
64 \newwrite\@xfhint

65 \immediate\openout\@xfhint=\jobname.KTVhint

We put some information in the first two lines of hint file.
66 {\catcode‘\%=12

67 \immediate\write\@xfhint{%% File created automatically by ‘ktv-texdata’.}

68 \immediate\write\@xfhint{%% DONOT EDIT THIS FILE MANUALLY.}}

hint Here is a trick about ‘hint’ environment. We collect hints in a same file. So we need
something to know exactly what ‘bxx’ a ‘hint’ (in the hint file) associates with.
So.... we assume that ‘#env’ specified in ‘bxx’ (in the data file) is a numberable
environment. Then when a ‘hint’ follows a ‘bxx’ (named bxxA) is written to hint

13

file, its number is the same as the number of ‘bxxA’ in the output. So we need a
counter7 to index the active ‘bxx’.
69 \newcount\c@bxx

70 \newenvironment{hint}{% begin-part of ‘hint’

If the hint is enabled
71 \if@xhint

72 \let\exx\relax

In the numbered environment ‘#env’, LATEX automatically creates a counter8

named ‘c@#env’. We let ‘c@bxx’ to the current value of ‘c@#env’, then subtract
‘c@bxx’ by 1 (LATEX will increase ‘c@bxx’ later). We create an data item in the
hint file, whose string-id is the same as the current ‘bxx’.
73 \c@bxx=\csname c@\@xenv\endcsname%

74 \advance\c@bxx by-1 %

75 \immediate\write\@xfhint{\string\setcounter{\@xenv}{\the\c@bxx}}

76 \immediate\write\@xfhint{\string\bxx(\@xenv)\@xlbl;}

The contents of the hint environment now will be written to the hint file.
77 \let\do\@makeother\dospecials\catcode‘\^^M\active%

78 \def\verbatim@processline{%

79 \immediate\write\@xfhint{\the\verbatim@line}}%

80 \expandafter\verbatim@start

If the hint is disable, let it start a comment environment. Here we use ‘\comment’
defined in verbatim package, not the ‘\c@mm@nt’ defined in this package9.
81 \else

82 \def\exx{\exx}%

83 \expandafter\comment

84 \fi}%

Now the end-part of hint environment. If the hint is enabled, we put an ‘\exx’ to
terminate ‘\bxx’ in the hint file. The line \noexpand\exx was added here but the
author forgot the reason. Please help him!
85 {%

86 \noexpand\exx

87 \if@xhint

88 \immediate\write\@xfhint{\string\exx}

89 \fi}

7.8 Replacements of macro \bxx

Macro \bxx will be replaced by one of these macros \@bxx, \@bxy, \@ball,
\@bnone, \@bnonebut, \@ballbut. The replacement depends on what the macro
\xgetfoo, \xkillfoo, ... are specified by the user.

7Please try to figure out this counter.
8We should not check for the existing of this counter: the checking may eat so much time!
9A fun story: in the first version of package, the author used ‘\comment’ by a mistake, but

package ran very well. He later found this error, and changed ‘\comment’ to ‘\c@mm@nt’, then the
package dumped into the errors!

14

For e.g., if the user calls \xgetall, then \bxx is replaced by \@ball; if they
call \xkillall, then \@bnone takes place.

For more details about the replacement, see the definition of \xget, \xgetall,
\xkill, xkillall, etc. in the subsection 7.13.

Here’s the summary of the replacements.

Calling The replacement of \bxx

\xget \@bxx
\xgetall \@ball

\xgetallbut \@ballbut

\xkill \@bxx
\xkillall \@bnone

\xkillallbut \@bnonebut

\xspec \@bxy

The common syntax for the macros \@bfoo is

\@bfoo(#env)[#thm]{#ID};

Here #thm is the optional argument of the environment #env. Both ‘[#thm]’ and
‘(#env)’ are the optional parameters of the \@bfoo (this means you can omit
‘[#thm]’ or ‘(#env)’ or both of them while callling ‘\@bfoo’).

\@bxx, \@bxy Each macro \@bxx, \@bxy does two things.
Firstly, it gets the information about the current ‘bxx’ (information contains:

#env, #thm and #ID). We use the \@bxxarg macro .
Secondly, it calls \@bfoodone to typeset the content of the ‘bxx’.

90 \def\@bxx#1;{%

91 \@bxxarg#1;%

92 \@bxxdone}

93 \def\@bxy#1;{%

94 \@bxxarg#1;%

95 \@bxydone}

\@ball Macro \@ball first gets the information about the ‘bxx’ (like \@bxx), but then it
calls ‘\@bdone@kern’, the kernel of the \@bdone.
96 \def\@ball#1;{%

97 \@bxxarg#1;%

98 \@bdone@kern}

\@bnone Macro \@bnone starts the comment by calling \c@mm@nt. This macro also disable
the hint environment that follows the ‘bxx’.
99 \def\@bnone#1;{%

100 \@xhintfalse

101 \def\exx{\exx}

102 \expandafter\c@mm@nt}

15

\@bnonebut Macro \@bnonebut ignores the contents of the ‘bxx’ if and only if the command
‘\csname\@xenv\@xlbl\endcsname’ equals to ‘\relax’.

First, the macro scans for information.
103 \def\@bnonebut#1;{%

104 \@bxxarg#1;%

Then it checks the status of the command ‘\csname\@xenv\@xlbl\endcsname’.
If this command is undefined, we turn off the next ‘hint’ and start the comment
command (to ignore the content of the ‘bxx’).

105 \expandafter\ifx\csname\@xenv\@xlbl\endcsname\relax

106 \@xhintfalse

107 \def\exx{\exx}

108 \expandafter\c@mm@nt

If this command is defined, the contents of the ‘bxx’ will be typeset. Before
calling ‘\@bdone@kern’, we let the status of the command ‘...\@xenv\@xlbl...’
to ‘\relax’. By doing this, we ensure that two ‘bxx’s in the data file that have
the same string-id will be typeset only once.

109 \else

110 \expandafter\let\csname\@xenv\@xlbl\endcsname\relax

111 \expandafter\@bdone@kern

112 \fi}

\@ballbut Macro \@ballbut is inverse from the macro ‘\@bnonebut’.
113 \def\@ballbut#1;{%

114 \@bxxarg#1;

115 \expandafter\ifx\csname\@xenv\@xlbl\endcsname\relax

116 \expandafter\@bdone@kern

117 \else

118 \expandafter\let\csname\@xenv\@xlbl\endcsname\relax

119 \@xhintfalse

120 \def\exx{\exx}

121 \expandafter\c@mm@nt

122 \fi}

7.9 Getting information from ‘bxx’

\@bxxarg This macro reads the information about the ‘bxx’. The information contains #env
(saved in ‘\@xenv’), #thm (saved in ‘\xhead’), #ID (saved in ‘\xlbl’).

We first set the initial value for three macros:
123 \def\@xenv{}

124 \def\@xhed{}

125 \def\@xlbl{}

We define two macros that save the default values for the #env and #thm. The
default value of #thm should be null (why?). Now the default #thm is aslo null,
but in the subsection 7.13, we define macro \xenv to change this behaviour.

126 \def\@@xenv{}

127 \def\@@xhed{}

16

Now we define \@bxxarg.
128 \def\@bxxarg{\futurelet\@tchar\chk@bxxarg}

We check if the next char is a ‘(’.
129 \def\chk@bxxarg{%

130 \ifx(\@tchar

131 \let\@txen\env@bxxarg

132 \else

133 \let\@txen\nop@bxxarg

134 \fi

135 \@txen}

If the next char is a ‘(’, we hope that the ‘bxx’ specifies the ‘(#env)’. Here the
author uses an ‘\edef’, but he really doesnot know the reasons. The ‘\def’ version
sometimes causes a strange error.

136 \def\env@bxxarg(#1)#2;{%

137 \edef\@xenv{#1}%

Now we look for the rest of the argument by calling \@@bxxarg.
138 \@@bxxarg#2;}

If the next char isnot a ‘(’, ‘bxx’ uses the default environment.
139 \def\nop@bxxarg#1;{%

140 \edef\@xenv{\@@xenv}%

Now we look for the rest of the argument (call \@@bxxarg).
141 \@@bxxarg#1;}

\@@bxxarg The calling of \@@bxxarg will first check if the next char is a ‘[’.
142 \def\@@bxxarg{\futurelet\@tchar\chk@@bxxarg}

143 \def\chk@@bxxarg{%

144 \ifx[\@tchar

145 \let\@txen\hed@@bxxarg

146 \else

147 \let\@txen\nop@@bxxarg

148 \fi

149 \@txen}

If the next char is a ‘[’, we hope that ‘bxx’ specifies the ‘[#thm]’
150 \def\hed@@bxxarg[#1]#2;{%

151 \edef\@xhed{#1}%

152 \edef\@xlbl{#2}}

If the next char isnot a ‘[’, the ‘#thm’ gets the default value.
153 \def\nop@@bxxarg#1;{%

154 \edef\@xhed{\@@xhed}%

155 \edef\@xlbl{#1}}

17

7.10 Typesetting the content of ‘bxx’

\@bxxdone This macro starts a \c@mm@nt (if the command ‘...\@xenv\@xlbl...’ is ‘\relax’),
or calls \@bdone@kern (the kernel of the \@bxxdone).

156 \def\@bxxdone{%

157 \expandafter\ifx\csname\@xenv\@xlbl\endcsname\relax

158 \@xhintfalse

159 \def\exx{\exx}

160 \expandafter\c@mm@nt

161 \else

162 \expandafter\let\csname\@xenv\@xlbl\endcsname\relax

163 \expandafter\@bdone@kern

164 \fi}

\@bdone@kern This macro typesets the contents of the ‘bxx’ by starting the environment ‘#env’.
It also turns on the next hint environment.

If the ‘bxx’ specifies the ‘#thm’, we should call ‘\begin{#env}[#thm]’; other-
wise, we just call ‘\begin{#env}’. (Then the ‘\exx’ equals to ‘\end{#env}’.)

Note that ‘\begin{#env}[]’ is different from ‘\begin{#env}. So we must
check if the ‘#thm’ is empty.

165 \def\@bdone@kern{%

166 \@xhinttrue%

167 \def\exx{\end{\@xenv}}

168 \expandafter\if@xNIL\@xhed;

169 \def\@txen{%

170 \begin{\@xenv}\@xdetail}

171 \else

172 \def\@txen{%

173 \begin{\@xenv}[\@xhed]\@xdetail}

174 \fi

175 \@txen}

\@bxydone This macro just passes the arguments to \@bxy@kern.
176 \def\@bxydone{\@bxy@kern(\@xenv){\@xlbl}}

\@bxy@kern This macro is the kernel of \@bxydone. It opens the data file, searchs for the
‘bxx’ whose string-id is ‘\@bxy@id’. If such ‘bxx’ is found, the macro stops the
seaching10 and calls ‘\@bdone@kern’ to typeset the contents of that ‘bxx’. Any
‘bxx’ in the data file whose string-id doesnot match the string saved in \@bxy@id
will be ignored.

Because a string-id never accepts the value ‘@’, we just let \@bxy@id to ‘@’ to
stop the searching.

177 \def\@bxy@id{@}

178 \def\@bxy@kern(#1)#2{%

179 \edef\@xtempi{#1#2}

10We really donot stop the searching. We just ignore the other ‘bxx’(s) in the data file.
Trick: Each time this macro opens the data file, it gets at most one data item, while, for e.g.,
\bdone@kern may get more than one.

18

180 \ifx\@bxy@id\@xtempi

181 \def\@bxy@id{@}

182 \expandafter\@bdone@kern

183 \else

184 \@xhintfalse

185 \def\exx{\exx}

186 \expandafter\c@mm@nt

187 \fi}

\@xspec@i If you read the above codes carefully, you donot see anything about the ‘openning
the data file’. Yes, the truth is that \@bxy, \@bxydone and aslo \@bxy@kern are
always used within the \@xspec@i. This macro does the openning.

188 \def\@xspec@i(#1)#2{

189 \let\bxx\@bxy

190 \edef\@bxy@id{#1#2}

Now start the searching (openning)
191 \input \@xlib}

7.11 Actions affect on the string-id

Each action foo must be associated with 3 routines

PLUSfoo+#1, MINUSfoo-#1, ZEROfoo#1,

@@@setflag The positive meanings of this action is to define the command

\csname\usr@xenv#1\endcsname

by letting this command to ‘\b@sy’.
192 \def\PLUS@@@setflag+#1,{%

193 \expandafter\let\csname\usr@xenv#1\endcsname\b@sy}

194 \def\MINUS@@@setflag-#1,{%

195 \expandafter\let\csname\usr@xenv#1\endcsname\relax}

196 \def\ZERO@@@setflag#1,{%

197 \expandafter\let\csname\usr@xenv#1\endcsname\b@sy}

@@@killflag The positive meanings of this action is to undefine the command

\csname\usr@xenv#1\endcsname

by letting this command to ‘\relax’.
198 \def\PLUS@@@killflag+#1,{%

199 \expandafter\let\csname\usr@xenv#1\endcsname\relax}

200 \def\MINUS@@@killflag-#1,{%

201 \expandafter\let\csname\usr@xenv#1\endcsname\b@sy}

202 \def\ZERO@@@killflag#1,{%

203 \expandafter\let\csname\usr@xenv#1\endcsname\relax}

19

@@@xspec This action associates with the \xspec (see subsection 7.13 for details). This ac-
tion, unlike @@@killflag nor @@@setflag, doesnot define/undefine the command
‘...\usr@xenv#1...’. The positive meaning of this action is openning data file
and getting the specified ‘bxx’.

204 \def\PLUS@@@xspec+#1,{%

205 \@xspec@i(\usr@xenv){#1}}

206 \def\MINUS@@@xspec-#1,{}

207 \def\ZERO@@@xspec#1,{%

208 \@xspec@i(\usr@xenv){#1}}

7.12 Openning the data file

\@xlib

\@@xlib

\@xlib stores the data file specified by users.
\@@xlib stores the data file used by the \@openlib.
Currently, two macros save the null values.

209 \def\@xlib{}

210 \def\@@xlib{}

\@openlib Open the data file. The syntax of this macro is \@openlib#1;, where #1 is the
file name. If #1 is omitted, the \@openlib uses the data file whose name is stored
in \@xlib. Note that in this case, the calling of macro is \@openlib;.

211 \def\@openlib#1;{%

212 \if@xNIL#1;

213 \expandafter\if@xNIL\@xlib;

214 % do nothing

215 \else

216 \def\@@xlib{\@xlib}

217 \fi

218 \else

219 \def\@@xlib{#1}

220 \fi

221 \input \@@xlib}

7.13 User’s macros

\xspec This macro provides a special ways to read the data file. After its scanning the
data file, the order of the ‘bxx’s in the ouput is the same the order of the IDs
specified in the #ID-list.

222 \def\xspec{%

223 \def\@action{@@@xspec}%

224 \@multact}

\xlib

\xopenlib

\xlib specifies the data file. \xopenlib opens the data file.
225 \def\xlib#1;{%

226 \edef\@xlib{#1}}

227 \let\xopenlib\@openlib

20

\xkill

\xkillall

\xkillallbut

Macro’s names speak that...
228 \def\xkill{%

229 \let\bxx\@bxx

230 \def\@action{@@@killflag}%

231 \@multact}

232 \def\xkillall{%

233 \let\bxx\@bnone}

234 \def\xkillallbut{%

235 \let\bxx\@bnonebut

236 \def\@action{@@@setflag}%

237 \@multact}

\xget

\xgetall

\xgetallbut

Macro’s names speak that...
238 \def\xget{%

239 \let\bxx\@bxx

240 \def\@action{@@@setflag}%

241 \@multact}

242 \def\xgetall{%

243 \let\bxx\@ball}

244 \def\xgetallbut{%

245 \let\bxx\@ballbut

246 \def\@action{@@@setflag}%

247 \@multact}

\xhintready The hint file must be closed (‘ready’) before being opened.
248 {\catcode‘\%=12

249 \gdef\xhintready{

250 \begingroup\catcode‘\%=12

251 \immediate\write\@xfhint{\string\endinput}

252 \immediate\write\@xfhint{%% END OF FILE %%}

253 \endgroup\immediate\closeout\@xfhint}}

\xopenhint Open the hint file.
254 \def\xopenhint{%

255 \xhintready

256 \xgetall

257 \xlib \jobname.KTVhint;

258 \xopenlib;}

\xenv Specify the default environment.
259 \def\xenv(#1){%

260 \edef\@@xenv{#1}}

\xdetailon

\xdetailoff

Turn the details on/off.
261 \def\xdetailon{%

262 \let\@xdetail\@@xdetail}

263 \def\xdetailoff{%

264 \let\@xdetail\relax}

21

\xenablesection

\xdisablesection

If we put some ‘\section’ commands in the data file, we may want to dis-
able/enable them.

First, we define a null section.
265 \def\nil@section#1{}

Then we save the old values of section-relatives just before \begin{document}.
We mention only \section, \subsection, \subsubsection.

266 \AtBeginDocument{%

267 \let\old@section\section

268 \let\old@subsection\subsection

269 \let\old@subsubsection\subsubsection}

Everytime you want to disable the section, we let \section to \nil@section.
270 \def\xdisablesection{%

271 \let\section\nil@section%

272 \let\subsection\nil@section%

273 \let\subsubsection\nil@section}

To restore, let \section to his old value (that we captured at the beginning of doc-
ument). If you redefine \section inside \begin{document} and \end{document},
you cannot get that new \section after using any \xdisablesection.

274 \def\xenablesection{%

275 \let\section\old@section%

276 \let\subsection\old@subsection%

277 \let\subsubsection\old@subsubsection}

7.14 Initialization

See section 8 for a reason.
278 \let\bxx\@bxx

279 〈/package〉

22

8 History

v01.xx 2002/12/xx the first design

v02.xx 2002/12/yy changes forgotten

v03.14 2002/12/18 the first good version
v03.15 2003/03/26 some litle changes
v03.17 2003/04/19 use two-step macro technique

\bxx,\xlib,\xopenlib needn’t any ended-char

v04.18 2003/04/22 modify: \@bxy@kern
v04.19 2003/04/23 change: use \par instead of \enlinechar in def. of \bxx
v04.19 2003/05/06 use ‘;’ as delimiter in definition of \bxx
v04.20 2003/05/11 optimize: \@bnone
v04.21 2003/05/12 changes forgotten

v05.23 2003/05/13 add: \xgetallbut, \xkillallbut; optimize
v05.24 2003/05/13 remove: \ifdetail, \if@xnil (boolean var.)

and optimize
v05.25 2003/05/14 fix: some litle bugs; remove: \@act
v05.26 2003/05/14 remove: bad options
v05.27 2003/05/15 bug: \bxx(verbatim)...; failed
v05.28 2003/05/17 bug: \foo-section cause error

move: \foo-section to the very end of package
v05.29 2003/05/18 bug: \bxx canot be nested.

(nesting: deactive bxx causes error)
(nesting: \xgetall works well, but
contents of hint is too bad.)

v05.30 2003/08/xx rewrite: document (vietnamese), optimize
v05.31 2003/09/20 rewrite: document (english), optimize
v05.32 2003/09/20 rewrite: document (english), optimize

remove: token list \everyactivebxx
bug: cannot use \xgetallbut, \xkillallbut,
\xget, etc., before any \xenv(#env)

v05.33 2003/09/21 remove: initialization
add: \xopenhint

v05.34 2003/09/22 bug: otions donot work.
fix: put \@@xdetail before \DeclareOption{detailon}
bug: if \xopenlib; before any \xget...
then \bxx is unknown control sequence
fix: \let\bxx\@bxx to initialize

v05.39 2003/09/20 (future) optimize: \@xspec

9 Miscellanea

The author write this package because he has some big libraries of mathemat-
ical exercises, but he really doesn’t like copying and pasting everytime he edits

23

a new test for students.
This package may contains some bugs. So the author hopes that you can help

him, even a bit.
In section 1, the author mentioned the ability of getting the data items whose

IDs are numbered oddly.... Currently this feature is unsupported . Please wait for
the next version, or you should do something by yourself!

The author’s English isnot quite well. He often mis-spells and dumps into er-
ror. He would like to be sorry!

If you find out that the package is useful for your private works, please send
to the author a little notice. Thank you very much!

The emails of the author is
kyanh@inic.biz, kyanh@linuxmail.org

References

[VE] Victor EIJKHOUT, TEX by Topic, Addison-Wesley, 1992.

24

