
ifnextok
—

\IfNextToken instead of \@ifnextchar

Does Not Skip Blank Spaces,

[and ‘\\ [’ may print bracket in

new line]∗

Uwe Lück†

June 27, 2011

Abstract

The ifnextok package deals with the behavior of LATEX’s internal
\@ifnextchar to skip blank spaces. This sometimes has surprising or
for some users really unwanted effects, especially with brackets following
\\ when the user does not intend to specify an optional argument, rather
wants that brackets are printed. The package offers commands and op-
tions for modifying this behavior, maybe limited to certain parts of the
document source.
[It works!] It may also be useful with active characters in lieu of \\, e.g.,
the double quote " with german.sty or babel.

v0.3 fixes behavior in non-typesetting mode with \MakeNotSkipping,
using a somewhat different technique than LATEX’s robustifications.

Keywords: macro programming, optional command arguments, man-
ual line breaks, humanities

Related packages: amsmath, mathtools

∗This document describes version v0.3 of ifnextok.sty as of 2011/06/27.
†http://contact-ednotes.sty.de.vu

1

http://ctan.org/pkg/german
http://ctan.org/pkg/babel
http://ctan.org/pkg/amsmath
http://ctan.org/pkg/mathtools
http://contact-ednotes.sty.de.vu

CONTENTS 2

Contents

1 Installing and Calling 3

2 Header (Legalize) 3

3 Outline 3
3.1 For Macro Writers . 4
3.2 For End-Users . 4
3.3 Intermediate . 4

4 Caveats 5

5 For Making Macros 5
5.1 The Main Command \IfNextToken 5
5.2 “Bold” Patching Commands . 6
5.3 Storing and Restoring . 7
5.4 The Star Test . 7
5.5 More General Patching with \@sptoken 8

5.5.1 \IfNextSpace . 8
5.5.2 \MakeNotSkipping . 9

6 “Manual” Line Breaks 10
6.1 Outline of Implementation . 10
6.2 “Normal” Manual Line Breaks 11
6.3 Manual Line Breaks in LATEX Environments 11
6.4 amsmath and mathtools . 12

7 Package Options 13
7.1 Behavior without Options . 13
7.2 Option newline . 13
7.3 Environments . 13
7.4 “All Options” or “Standard Options” 13

8 Processing Options and Leaving the Package 14

9 Acknowledgments 14

10 VERSION HISTORY 14

1 INSTALLING AND CALLING 3

1 Installing and Calling

The package file ifnextok.sty is provided ready, installation only requires
putting it somewhere where TEX finds it (which may need updating the file-
name data base).1

Below the \documentclass line(s) and above \begin{document}, you load
ifnextok.sty (as usually) by

\usepackage{ifnextok} or by \usepackage[〈options〉]{ifnextok}

—〈options〉 described in Section 7. E.g., the main goal of writing the package
is achieved by

\usepackage[stdbreaks]{ifnextok}

2 Header (Legalize)

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

2 \ProvidesPackage{ifnextok}[2011/06/27 v0.3 test next token (UL)]

3

4 %% Copyright (C) 2011 Uwe Lueck,

5 %% http://www.contact-ednotes.sty.de.vu

6 %% -- author-maintained in the sense of LPPL below --

7 %%

8 %% This file can be redistributed and/or modified under

9 %% the terms of the LaTeX Project Public License; either

10 %% version 1.3c of the License, or any later version.

11 %% The latest version of this license is in

12 %% http://www.latex-project.org/lppl.txt

13 %% We did our best to help you, but there is NO WARRANTY.

14 %%

15 %% Please report bugs, problems, and suggestions via

16 %%

17 %% http://www.contact-ednotes.sty.de.vu

18 %%

3 Outline

The ifnextok package deals with the behavior of LATEX’s internal \@ifnextchar
to skip blank spaces. This sometimes has surprising or for some users really
unwanted effects, especially with brackets following \\ when the user does not
intend to specify an optional argument, rather wants that brackets are printed.
The package offers commands and options for modifying this behavior, maybe
limited to certain parts of the document source. They are described in the
sections below together with the presentation of the implementation.

1http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

3 OUTLINE 4

As after multiletter commands blank spaces are skipped anyway (TEXbook
p. 46f.), the package makes a difference only for one-symbol commands such
as \\ , or for active characters such as the double quote with german.sty
and babel. (v0.21: Or also optional arguments following mandatory ones—
“trailing” optional arguments mentioned by Lars Hellström and Bruno Le Floch
on LATEX-L. v0.21a: Moreover, with “starred” command versions having a first
optional argument!)

Similar things happen in amsmath and mathtools, and as of v0.21, we discuss
relations to these packages.

A little overview of the package’s commands and options:

3.1 For Macro Writers

1. \IfNextToken is an alternative to \@ifnextchar, not skipping spaces
(Section 5.1). This macro is the low-level backbone of all other modifi-
cations of LATEX commands.

2. \IfStarNextToken is an alternative to \@ifstar, not skipping spaces,
using \IfNextToken in lieu of \@ifnextchar (Section 5.4).

3. Some “patching” commands aim at modifying existing (LATEX) macros
without specifying the resulting new definition explicitly (Sections 5.2 and
5.4). As a package writer, you just must know which macros need to be
modified and specify their names as arguments for the patching macros.

4. There are low-level commands \INTstore and \INTrestore for undoing
modifications of existing macros (Section 5.3).

3.2 For End-Users

There are high-level commands for modifying \\ and selecting LATEX envi-
ronments to be affected (Section 6). Package options execute some of them
(Section 7), e.g., [stdbreaks].

3.3 Intermediate

\MakeNotSkipping{〈target〉}{〈on-space〉} described in Section 5.5 is somewhat
“intermediate.” It acts on a document-level command 〈target〉 without any as-
sumptions about its internals. On the other hand, choosing 〈on-space〉 for the
new behavior of 〈target〉 in front of a space token may need some knowledge . . .

(TODO: how command names are composed)

http://ctan.org/pkg/german
http://ctan.org/pkg/babel
http://ctan.org/pkg/amsmath
http://ctan.org/pkg/mathtools

4 CAVEATS 5

4 Caveats

1. Testing has not been very comprehensive so far. Usage together with
amsmath may require special care or fail altogether.

2. Switching into “don’t-skip-spaces” mode two times without switching back
into normal mode in between won’t work with this version (v0.1–v0.3
TODO) of the package (TODO: permanent aliases). You will get the

Argument of 〈patching〉 has an extra }.

error. This also applies to commands that have been issued by package
options.

3. Implementation may change much. (TODO 0.3)

5 For Making Macros

5.1 The Main Command \IfNextToken

\IfNextToken〈match〉{〈if 〉}{〈else〉} is the obvious variant of LATEX’s internal
\@ifnextchar executing 〈if 〉 if actually the “very next” token is 〈match〉 and
executing 〈else〉 otherwise. If 〈match〉 is not a space token (LATEX’s \@sptoken)
but the next token is, 〈else〉 is executed; while \@ifnextchar tries matching
the next token after ensuing space tokens.

19 \newcommand{\IfNextToken}[3]{%

20 \let\nextok@match= #1%

. . . v0.21 adds ‘= ’ after Heiko Oberdiek’s explanation on texhax, this allows
\@sptoken as a possible #1.

21 \def\nextok@if{#2}\def\nextok@else{#3}%

22 \futurelet\@let@token\nextok@decide}

. . . apart from using different names, this is the same as \new@ifnextchar in
amsgen.sty of the amsmath bundle:

\long\def\new@ifnextchar#1#2#3{%
\let\reserved@d= #1%
\def\reserved@a{#2}\def\reserved@b{#3}%
\futurelet\@let@token\new@ifnch

}

. . . and the behavior is essentially the same . . .

23 \def\nextok@decide{%

24 \ifx\@let@token\nextok@match \expandafter\nextok@if

25 \else \expandafter\nextok@else

26 \fi}

http://ctan.org/pkg/amsmath
http://tug.org/pipermail/texhax/2011-May/017590.html
http://ctan.org/pkg/amsmath

5 FOR MAKING MACROS 6

The analogue to our \nextok@decide in amsmath/amsgen.sty is \new@ifnch:

\def\new@ifnch{%
\ifx\@let@token\reserved@d \let\reserved@b\reserved@a \fi
\reserved@b

}

. . . and these two macros (ifnextok’s and amsmath’s) actually make the difference
to Standard LATEX. The latter’s \@ifnch tests for \@sptoken before looking for
the actually wanted char, ifnextok and amsmath don’t. As to \new@ifnch vs.
\nextok@decide, the first has one token less than the latter, but one assignment
more. What does this mean? TODO

When I decided to create the ifnextok package, I was not aware of the simi-
larity to amsmath, and I am not sure what I would have done had I . . .

\NoNextSkipping now switches into “don’t-skip-spaces” mode “altogether”
(however . . .):

27 \newcommand*{\NoNextSkipping}{\let\@ifnextchar\IfNextToken}

This appears so dangerous to me that I don’t want to support it much right
now. \RestoreNextSkipping just switches back to LATEX’s original version, so
some support for amsmath may be missing here.

28 \newcommand*{\RestoreNextSkipping}{%

29 \let\@ifnextchar\kernel@ifnextchar}

Actually, because \NoNextSkipping does not affect \kernel@ifnextchar, those
of LATEX’s commands using the latter still will skip spaces (with package version
v0.1).

As opposed to amsmath, ifnextok aims at more choices as to what document-
level commands are affected by the modified next checking. Of course, amsmath
deals with breaks between math display lines, while the present package rather
was motivated by experiences in the humanities.

\@sptoken was discussed under ‘Some puzzling TeX’ on texhax in 2011
(February/May/June), and the matter is discussed in The TEXbook in Exer-
cise 24.6 and on pp. 376f.

5.2 “Bold” Patching Commands

\INTpatch〈replacer〉〈macro〉 replaces something in the definition of 〈macro〉
according to the replacement macro 〈replacer〉. This seems to work with the
macros I thought of. It does not work when (for replacing \@ifnextchar)
(a) there are more \@ifnextchars in the macro to patch (outside braces), or
when (b) the only \@ifnextchar is inside a pair of braces.

30 \newcommand*{\INTpatch}[2]{%

31 \expandafter\expandafter\expandafter \def

32 \expandafter\expandafter\expandafter #2%

33 \expandafter\expandafter\expandafter {%

34 \expandafter #1#2}} %% red. 2011/06/24

http://ctan.org/pkg/amsmath

5 FOR MAKING MACROS 7

\NextTestPatch〈macro〉 replaces \@ifnextchar in the definition of 〈macro〉
by \IfNextToken.

35 \newcommand*{\NextTestPatch}{\INTpatch\nextok@patch}

36 \def\nextok@patch#1\@ifnextchar{#1\IfNextToken} %% red. 2011/06/24

Another application of \INTpatch is \StarTestPatch in Section 5.4.

5.3 Storing and Restoring

\INTstore〈macro〉 stores the meaning of the macro 〈macro〉 in a special name
space.

37 \newcommand*{\INTstore}[1]{%

38 \expandafter\let\csname\INT@save#1\endcsname#1}

In order to apply \MakeNotSkipping even to active characters below (v0.2),
nothing must be gobbled from \string〈token〉:

39 % \newcommand*{\INT@save}{INT.save\expandafter\@gobble\string}

40 \newcommand*{\INT@save}{INT.save\string}

\INTrestore〈macro〉 restores the meaning of 〈macro〉 that is expected to have
been stored with \INTstore:

41 \newcommand*{\INTrestore}[1]{%

42 \expandafter\let\expandafter#1\csname\INT@save#1\endcsname}

5.4 The Star Test

Before a LATEX line-break command tests for an optional argument, it tests
for a star using \@ifstar, which in turn invokes \@ifnextchar. So already
\@ifstar needs to be modified. We do not so much want to change \@ifstar
altogether, rather we will replace it at some places by a non-skipping variant
\IfStarNextToken ,2 using the patching command \StarTestPatch〈macro〉 .
(\@ifstar has an argument and therefore cannot be patched as nicely as the
line-break commands.)

43 \newcommand*{\IfStarNextToken}[1]{\IfNextToken*{\@firstoftwo{#1}}}

44 \newcommand*{\StarTestPatch}{\INTpatch\nextok@starpatch}

The macro to be patched may contain a \par (\@centercr is an example), so
we need \long:

45 \long\def\nextok@starpatch#1\@ifstar{#1\IfStarNextToken}

\StoreStarSkipping stores the current meaning of \@ifstar . . .

46 \newcommand*{\StoreStarSkipping}{\INTstore\@ifstar}

2TODO or \IfNextStar, cf. \IfNextSpace.

5 FOR MAKING MACROS 8

. . . so that it can be restored by \RestoreStarSkipping :

47 \newcommand*{\RestoreStarSkipping}{\INTrestore\@ifstar}

\NoStarSkipping renders \@ifstar non-skipping altogether:

48 \newcommand*{\NoStarSkipping}{\let\@ifstar\IfStarNextToken}

This again seems to be so dangerous that it will not be supported much with
package version v0.1 (by a package option).

On the other hand, amsmath (amsgen.sty) is not as scrupulous as we are
and indeed redefines \@ifstar altogether, equivalent to our \NoStarSkipping,
except that the latter provides a method to restore. I.e., as soon as you have
loaded amsgen.sty (invoked by any amsmath package), you have decided that
a star appearing after whitespace is printed as a star, rather than choosing
the “starred” version of the respective command. What we actually find in
amsgen.sty is

\def\@ifstar#1#2{\new@ifnextchar *{\def\reserved@a*{#1}\reserved@a}{#2}}

The \reserved@a trick seems to be due to amsmath’s idea of implementing the
conditional (see the code we are quoting in Section 5.1).

5.5 More General Patching with \@sptoken

This section deals with modifying macros by a more general technique than
employed in Section 5.2. We do not use any knowledge of internals of the target
user command (a “control symbol” like \\ or an “active character”), and the
command may take arguments, as the active double quote does with german.sty
or babel.

5.5.1 \IfNextSpace

\IfNextSpace{〈if 〉}{〈else〉} is an auxiliary macro that executes 〈if 〉 if the next
token is a space token (LATEX’s \@sptoken), otherwise it executes 〈else〉:

49 \newcommand*{\IfNextSpace}{\IfNextToken\@sptoken}

This did not work with the v0.2 version of \IfNextToken that didn’t have ‘= ’,
due to \@sptoken being an “implicit space token,” as Heiko Oberdiek pointed
out on texhax. He also provided the remedy that actually was amsmath’s way
. . .

v0.2 was:

\newcommand*{\IfNextSpace}[2]{%
\def\nextok@if{#1}\def\nextok@else{#2}%
\futurelet\@let@token\nextok@ifspace}

\newcommand*{\nextok@ifspace}{%
\ifx\@let@token\@sptoken \expandafter \nextok@if
\else \expandafter \nextok@else
\fi}

. . . not so bad from an efficiency point of view, but . . .—

5 FOR MAKING MACROS 9

5.5.2 \MakeNotSkipping

\MakeNotSkipping{〈target〉}{〈on-space〉} should modify 〈target〉 so that it
acts in its usual way when no space token is ahead while executing 〈on-space〉
otherwise. E.g., 〈target〉 may be the active double quote " from babel, and on
the left of a space token you want that the double quote just prints an ordinary
double quote from the ligature ‘’’’ (the first pair of argument braces may be
omitted):

\MakeNotSkipping{"}{’’}

. . . while I don’t really recommend this right now (v0.2f.).
〈target〉, being on document level and probably appearing in moving argu-

ments, must be robust, while \IfNextSpace is not. When 〈target〉 has been
defined using \DeclareRobustCommand (\\ from the document environment
is an example), we would loose the original behavior of 〈target〉 if we used
\DeclareRobustCommand ourselves.

v0.21 was horribly flawed at this point; I had not tested all cases, I had not
studied how LATEX’s \DeclareRobustCommand handles control symbols (such as
_, see source.pdf), and my implementation did not obey the warning in my
ancompanying documentation . . .

When 〈target〉 is a single (active) character, it may have been robusti-
fied by making it expand to a robust control sequence token, such as ~ via
\nobreakspace{}—we don’t know, or don’t try to find out now. We make it
robust, accepting that this may just introduce an unnecessary extra macro.

50 \newcommand*{\INT@modified}[1]{%

51 \ifx\protect\@typeset@protect

52 \expandafter\expandafter\expandafter \IfNextSpace

53 \csname\INT@mod#1\expandafter\endcsname

54 \else

55 \protect#1%

56 \fi}

\INT@mod〈cs〉 is another “name modifier”:

57 \newcommand*{\INT@mod}{INT@mod.\string}

Here is the main command of the section. \@tempa will store the mean-
ing of the command that 〈target〉 would call in typesetting mode after
\DeclareRobustCommand〈target〉. \@tempb will store what 〈target〉 does in in
typesetting mode, maybe that is just the meaning of 〈target〉 (kind of flag, like
\if@tempswa):

58 \newcommand*{\MakeNotSkipping}[2]{%

59 \expandafter \let \expandafter \@tempa

60 \csname\expandafter\@gobble\string#1 \endcsname

61 \let\@tempb#1%

When #1 is a control word, and its name, extended by a space, is the name
of a defined token, we lazily (like makerobust, TODO) assume that its current

http://ctan.org/pkg/makerobust

6 “MANUAL” LINE BREAKS 10

meaning was assigned by \DeclareRobustCommand. One exception: if that
token is the control space \ , #1 is a single character (hopefully active, TODO
check!?).

62 \ifx\@tempa\relax \else \ifx\@tempa\ \else

63 \let\@tempb\@tempa \fi \fi

64 \expandafter\let\csname\INT@save#1\endcsname\@tempb

We have analyzed #1 and now may modify it:

65 \def#1{\INT@modified#1}%

We do not know beforehand what 〈on-space〉 will contain, in any case it should
not be expanded right here, that’s why we use the token register \@toks:

66 \toks@{#2}%

67 \expandafter\edef\csname\INT@mod#1\endcsname{%

68 {\the\toks@}%

69 \expandafter\noexpand\csname\INT@save#1\endcsname}%

70 }

This still is experimental, and you must care not to apply the patch two times
when it has not been undone in between. The main application may be a
macro like \\ that some (non-standard) environment defines; then you could
redefine the environmont so that its start finally modifies that macro according
to your wishes. In the latter situation, the end of the environment will undo
your \MakeNotSkipping;

TODO: In the case of " , this might be a starting point for handling conven-
tions about moving an ensuing punctuation mark to the left of the quotation
mark. Moreover, getting something really useful would require dealing with "
at the left of a bracket too.

6 “Manual” Line Breaks

6.1 Outline of Implementation

In the first instance, the present package aims at rendering \\ a command that
interpretes a left-hand square bracket as a start of an optional argument only
if the bracket is not preceded by any other token (apart from the star in *),
especially not by a space token.

Indeed, an author may expect that when a bracket opens in a different line
than the \\, then it will be printed rather than interpreted as an optional-
argument delimiter (the package author has been such an author some times).
Now, when the bracket only is in a line following the line carrying the \\, the
end-line character normally produces a space token (TEXbook p. 47), so the
present idea of implementation will cover the case of a bracket in the next line.

In latex.ltx, the names of the commands implementing the line break have
some “pivot” part 〈pivot〉 that we can use to patch them in a uniform way. They

6 ‘‘MANUAL” LINE BREAKS 11

are two in each case: The first starts with \@〈pivot〉 and invokes \@ifstar, the
second starts with \@x〈pivot〉 and invokes the left-hand-bracket test. Both of
them need to be patched.

6.2 “Normal” Manual Line Breaks

If I had been aware of the difficulties of this part, I probably would not have
started writing this package, hoping it would be the work of about an hour.

\@xnewline must be patched in order to get a non-skipping version of the
bracket test, and this patch suffices for the optional-argument goal.

The \@ifstar call is in \@normalcr and its alias \\ ; the latter is invoked
by \\ according to \DeclareRobustCommand\\.

Things seem to be easier when \\ expands to \@normalcr instead of being
an alias of it (CAUTION!). Then we just need to control \@normalcr:

71 \@namedef{\@backslashchar\space}{\@normalcr}

\StoreNewlineSkipping stores the skipping behavior of \\ outside special
environments:

72 \newcommand*{\StoreNewlineSkipping}{%

73 \INTstore\@normalcr \INTstore\@xnewline}

\RestoreNewlineSkipping restores the skipping behavior of \\ outside spe-
cial environments:

74 \newcommand*{\RestoreNewlineSkipping}{%

75 \INTrestore\@normalcr \INTrestore\@xnewline}

\NoNewlineSkipping suppresses skipping blank spaces with \\ outside special
environments:

76 \newcommand*{\NoNewlineSkipping}{%

77 \StarTestPatch\@normalcr \NextTestPatch\@xnewline}

6.3 Manual Line Breaks in LATEX Environments

The macros in the present section should modify LATEX’s \\ in environments
(〈env〉 being one of:) center , tab , array , and tabular . These environ-
ment names are the expected arguments of those macros. However, argument
center also affects the flushleft , flushright , and verse environments,3

and array and tabular should also affect their enhanced variants from other
LATEX packages. When this internal structure of LATEX changes, the present
section may become obsolete . . .

\INTactOnEnv{〈action1 〉}{〈action2 〉}{〈env〉} is the backbone of these
macros. 〈action1 〉 and 〈action2 〉 are one of

\INTstore, \INTrestore, \StarTestPatch, \NextTestPatch.

〈action1 〉 deals with \@ifstar, 〈action2 〉 deals with \@ifnextchar:
3verse is provided by LATEX’s standard classes only, while flushleft and flushright

belong to the LATEX kernel.

http://ctan.org/pkg/classes

6 “MANUAL” LINE BREAKS 12

78 \newcommand*{\INTactOnEnv}[3]{%

79 \expandafter#1\csname @#3cr\endcsname

80 \expandafter#2\csname @x#3cr\endcsname}

\StoreSkippingCRs{〈env〉} stores the skipping behavior of \\ in environ-
ments 〈env〉:

81 \newcommand*{\StoreSkippingCRs}{%

82 \INTactOnEnv\INTstore\INTstore}

\RestoreSkippingCRs{〈env〉} restores the skipping behavior of \\ in envi-
ronments 〈env〉:

83 \newcommand*{\RestoreSkippingCRs}{%

84 \INTactOnEnv\INTrestore\INTrestore}

\NotSkippingCRs{〈env〉} suppresses space skipping of \\ in environments
〈env〉:

85 \newcommand*{\NotSkippingCRs}{%

86 \INTactOnEnv\StarTestPatch\NextTestPatch}

Do these commands work?
[Or do they not?]

By contrast, the environments quotation and quote from LATEX’s stan-
dard classes use the “normal” newline command essentially provided by
\@normalcr.

6.4 amsmath and mathtools

Just discussing related functionality in the amsmath and mathtools packages,
without any own code:

amsmath modifies the star (*) test all over the document (see our Sec-
tion 5.4), while providing own (not skipping) versions of \\ rather in math
displays and math environments only. This applies quite obviously to the
{cases} and {matrix} environments. I am not sure about amsmath’s use
of \displaybreak, (cf. amstex.sty and the \intertext command) and
\math@cr.

mathtools modifies amsmath’s line breaking behavior in turn on its options
[allowspaces] and [disallowspaces], referring to some strange behavior of
amsmath. Still I don’t understand what is going on entirely, and my impression is
that nobody else has understood these things entirely so far. mathtools is not the
first package suppressing space skipping with \\, amsmath has done this already;
the question is where, where not, and why . . . mathtools’s [disallowspaces]
just seems to provide a more straightforward policy . . . TODO

http://ctan.org/pkg/classes
http://ctan.org/pkg/amsmath
http://ctan.org/pkg/mathtools

7 PACKAGE OPTIONS 13

7 Package Options

7.1 Behavior without Options

If the package is called without any option, it only defines \IfNextToken,
\IfStarNextToken and the other package-writer or user commands, without
actually changing behavior of any LATEX command.

7.2 Option newline

Package option newline stores and disables space skipping for \\ in “normal”
mode according to Section 6.2:

87 \DeclareOption{newline}{\StoreNewlineSkipping\NoNewlineSkipping}

7.3 Environments

The next package options are just the environment names according to Sec-
tion 6.3 (center , tab , array , tabular). Option 〈env〉 stores and disables
the skipping behavior of \\ in 〈env〉 environments. We abuse the our tempo-
rary macro \nextok@match from Section 5.1:

88 \def\nextok@match#1{%

89 \DeclareOption{#1}{\StoreSkippingCRs{#1}\NotSkippingCRs{#1}}}

90 \nextok@match{center}

91 \nextok@match{tab}

92 \nextok@match{array}

93 \nextok@match{tabular}

7.4 “All Options” or “Standard Options”

Package Options all and (v0.11:) stdbreaks have the same effect as using
the newline option and the environment package options center, tab, array,
and tabular at once.

94 \def\nextok@match#1{\csname ds@#1\endcsname}

(. . . must not be changed before \ProcessOptions . . .)

95 \DeclareOption{all}{%

96 \nextok@match{newline} \nextok@match{center}

97 \nextok@match{tab} \nextok@match{array} \nextok@match{tabular}}

Behavior of option all may change in the future of the package, while option
stdbreaks should rather keep its present behavior.

98 \DeclareOption{stdbreaks}{\nextok@match{all}} %% v0.11

8 PROCESSING OPTIONS AND LEAVING THE PACKAGE 14

8 Processing Options and Leaving the Package

99 \ProcessOptions

100 \endinput

9 Acknowledgments

While I experienced the problem myself some years ago with a critical edition,
I finally decided to do this work after postings by Susan Dittmar (March 2011)
and Philipp Stephani (December 2010) on the ’texhax’ mailing list. The latter
pointed to mathtools.

Moreover, the space skipping matter was discussed on the LATEX-L mailing
list (‘xparse and space skipping’) in mid of May 2011, and the present package
may be considered a contribution to that discussion (saying something like:
keep the simple standard for beginners, offer something advanced for advanced
users if you think some of them want it . . . maybe just as contrib). Bruno
Le Floch (May 11) and Frank Mittelbach (May 15) made me aware of the
similar functionality in amsmath. Wordings in describing ifnextok may resemble
wordings in that LATEX-L very much. Only for v0.21, I actually read these
LATEX-L postings, rather than only their subject lines.

See sections 5.1 and 5.5 for Heiko Oberdiek’s contribution.

10 VERSION HISTORY

101 v0.1 2011/05/23 very first

102 v0.11 2011/05/23 typo ‘mathc’ fixed, where/when

103 2011/05/27 &, more structure, option [stdbreaks]

104 2011/05/27 doc. mentions ‘verse’, ‘quotation’, ‘quote’;

105 ack.s

106 v0.2 2011/05/30 \IfNextSpace, \MakeNotSkipping

107 2011/05/31 using \@normalcr differently;

108 corrected \IfNextSpace

109 v0.21 2011/06/02 reworked \IfNextToken and \IfNextSpace

110 after Heiko Oberdiek, regarding amsmath;

111 documentation discusses amsmath and mathtools

112 and refers to LATEX-L

113 2011/06/03 ... \ , \rq\ ; corr. version string

114 v0.21a 2011/06/14 quoting \@ifstar from amsmath, extended comments

115 on amsmath and mathtools, starred versions,

116 Heiko Oberdiek for sec:main

117 TO CTAN

118 v0.22 2011/06/24 ack’s extended; reduced sec:patch; sec:genpatch:

119 horribly fragile robustification fixed

120 2011/06/25 re-implementations in sec:patch using \WCS...

121 2011/06/26 was named v0.3, renamed v0.22

122 JUST STORED

123 v0.3 2011/06/26 sec:stored as v0.11;

http://tug.org/pipermail/texhax/
http://ctan.org/pkg/mathtools

10 VERSION HISTORY 15

124 sec:genpatch code similar to v0.2;

125 different sectioning; \pagebreak’s

126 2011/06/27 \INT@modified streamlined, rm. useless \\ example

127 and wrong description of \INT@modified

128

	Installing and Calling
	Header (Legalize)
	Outline
	For Macro Writers
	For End-Users
	Intermediate

	Caveats
	For Making Macros
	The Main Command \IfNextToken
	``Bold" Patching Commands
	Storing and Restoring
	The Star Test
	More General Patching with \@sptoken
	\IfNextSpace
	\MakeNotSkipping

	``Manual" Line Breaks
	Outline of Implementation
	``Normal" Manual Line Breaks
	Manual Line Breaks in LaTeX Environments
	'amsmath' and 'mathtools'

	Package Options
	Behavior without Options
	Option `newline'
	Environments
	``All Options" or ``Standard Options"

	Processing Options and Leaving the Package
	Acknowledgments
	VERSION HISTORY

