
T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

AcroTEX.Net

The grayhints Package

D. P. Story

Copyright © 2018 dpstory@acrotex.net www.acrotex.net
Prepared: November 1, 2018 Version 1.2, 2018/26/04

mailto:dpstory@acrotex.net
www.acrotex.net

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

Table of Contents

1 Introduction 3

2 Package options 3

3 Creating a form field with a gray hint 4
3.1 Variable text field, no calculate script . 4
3.2 Variable text field, with calculate script . 5
3.3 Changing the colors for gray hints . 6
3.4 Remarks on using Adobe built-in formatting functions 7

4 Extending the functionality of grayhints 8

5 My retirement 9

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

3

1. Introduction

We often see in HTML pages or in compiled executable applications, form fields (text
fields, input fields) that require user input. The untouched field has text within it in-
forming the user of the nature of the data to be entered into the field. This “grayed hint”
immediately disappears when the user focuses the cursor on the field.1 We illustrate
the concept with an example or two.

Of course, the usual tool tips may also be provided.

It is not natural for Adobe form fields to do this, it takes some support code for
it to work properly; scripts for the Keystroke, Format, OnFocus, OnBlur, and Calculate
events are needed.

The grayhints package works as designed for Adobe Reader and PDF-XChange Edi-
tor.2 All LATEX workflows for PDF creation are also supported.

2. Package options

Without passing any options, the eforms package of AeB, dated 2017/02/27, is required;
the document JavaScript function AllowCalc() and modified Adobe built-in functions
are automatically embedded in the document. There are options, however, to modify
this default setup.

usehyforms By default, this package requires eforms, dated 2017/02/27; however, if
you are more comfortable using the form fields of hyperref, specify the option
usehyforms.3 When usehyforms is specified, insdljs dated 2017/03/02 or later
is required.

nocalcs If this option is taken, the document JavaScript function AllowCalc() is not
embedded in the document. The implications are that you are not using any
calculation fields.

nodljs When this option is specified, there are no requirements placed on this pack-
age; that is, neither eforms nor insdljs are required. Use this option is you are not
using any of the Adobe built-in formatting functions.

Demo files: gh-eforms.tex, gh-hyperref.tex. The latter file uses the usehyforms
option (and hyperref form fields), while the former uses the eforms package. The demo
files gh-fmt-eforms.tex, gh-fmt-hyperref.tex provided additional examples of
the use of Adobe’s built-in formatting functions.

1Focus on the field by clicking inside the form field.
2PDF-XChange Viewer, which is no longer supported by Tracker Software Products, will display the gray

hints, but some of the needed JavaScript are not supported.
3eforms and hyperref form fields can be used in one document.

https://www.tracker-software.com/

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

4

3. Creating a form field with a gray hint

In this documentation, we use eforms form fields to illustrate concepts, the demonstra-
tion file gh-hyperref.tex and gh-fmt-hyperref.tex has the form field markup for
the case of hyperref forms.

There are two cases: (1) an ordinary variable text form field (this includes text fields
and editable combo boxes) with no calculate script; (2) same as (1), but the field has a
calculate script.

3.1. Variable text field, no calculate script

When there is no calculate script, to obtain a gray hint, it is necessary to supply scripts
for the Format, Keystroke, OnFocus, and OnBlur events. The scripts are all defined
in the grayhints package. In addition, the color of the text in the text field must be
appropriate. We illustrate,

1 \textField[\TU{Enter your first name so I can get to know you better}
2 \textColor{\matchGray}\AA{%
3 \AAKeystroke{\KeyToGray}
4 \AAFormat{\FmtToGray{First Name}}
5 \AAOnFocus{\JS{\FocusToBlack}}
6 \AAOnBlur{\JS{\BlurToBlack}}
7 \AACalculate{\CalcToGray} % required if PDF-XChange Editor is used
8 }]{NameFirst}{2in}{11bp}

By default, the text color is black and the grayed hint text is light gray. The tool tip
(\TU) is grayed out, as it is optional. In line (2) we match the color for the text to the
gray color using the command \matchGray of grayhints. Within the argument of \AA,
the \AAFormat, \AAKeystroke, \AAOnFocus, and \AAOnBlur scripts are inserted.

Keystroke Script: In line (3), \KeyToGray is placed within the argument of
\AAKeystroke. This script changes the color of the text to gray when
the field is empty.

Format Script: The script snippet \FmtToGray takes a single argument,
which is the text of the hint. In line (4) the hint is ‘First Name’.

OnFocus Script: The code snippet \FocusToBlack is inserted into the argu-
ment of \OnFocus, as seen in line (5). When the field comes into focus,
this script changes the color to the normal color (usually black).

OnBlur Script: In line (6), the \BlurToBlack script is placed within the
argument of \OnBlur, in the manner indicated. When the field loses
focus (blurred), the script changes the color of text to gray if the field
is empty or to its normal color (usually black), otherwise.

Calculate Script: In line (7), the Calculate event resets the color to gray.
This is needed when the user presses the Enter key rather than exiting
the field by tabbing out, or clicking or tapping an area outside the field.
This script is required when (1) there is a possibility that PDF-XChange
Editor is used; or (2) a “totals” calculation field.

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

Creating a form field with a gray hint 5

The hyperref form field counterpart to the above example is,

1 \TextField[name={NameFirst},
2 height=11bp,width=2in,charsize=9bp,
3 color={\matchGray},
4 keystroke={\KeyToGray},
5 format={\FmtToGray{First Name}},
6 onfocus={\FocusToBlack},
7 onblur={\BlurToBlack},
8 calculate={\CalcToGray} % required if PDF-XChange Editor is used
9]{}

The two fields appear side-by-side:

Both fields appear in their ‘default’ appearance.

3.2. Variable text field, with calculate script

If you want to make calculations based on entries in other fields, you will need the code
snippet \CalcToGray as part of your calculate script.

1 \textField[\TU{The total for first and second integers}
2 \textColor{\matchGray}\AA{%
3 \AAKeystroke{AFNumber_Keystroke(0,1,0,0,"",true);\r\KeyToGray}
4 \AAFormat{AFNumber_Format(0,1,0,0,"",true);\r\FmtToGray{Total}}
5 \AACalculate{var cArray=new Array("Integer");\r
6 if(AllowCalc(cArray))AFSimple_Calculate("SUM", cArray);\r
7 \CalcToGray}
8 \AAOnFocus{\JS{\FocusToBlack}}
9 \AAOnBlur{\JS{\BlurToBlack}}

10 }]{TotalNumbers}{1in}{11bp}

The use of \r is optional, the author uses this to format the script within the user-
interface of Acrobat (or PDF-XChange Editor).4 The \textColor (line (2)), \AAOnFocus
(line (8)), and \AAOnBlur (line (9)) are the same as earlier presented. Several com-
ments are needed for the \AAKeystroke, \AAFormat and \AACalculate lines. The
\AACalculate event above also shows, in general, how to integrate the gray hint
methodology with other scripts; as a general rule, the gray hints commands should
come last.

• This is a number field, so we use the built-in functions AFNumber_Keystroke and
AFNumber_Format provided by the Adobe Acrobat and Adobe Acrobat Reader
distributions. In lines (3) and (4), the \KeyToGray and \FmtToGray code snippets
follow the built-ins.5

4The helper commands \r and \t are defined in eforms; if eforms is not loaded, use \jsR and \jsT
instead.

5As a general rule, the code snippets \KeyToGray, \FmtToGray, and \CalcToGray should inserted after
any built-in functions.

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

Creating a form field with a gray hint 6

• For the Calculate event, special techniques are used. We define an array cArray
(line (5)) consisting of the names of all the dependent fields we use to calculate
the value of this field. In line (6), we make the calculation (AFSimple_Calculate)
only if the document JavaScript function AllowCalc(cArray) returns true. The
function returns true only if at least one of the fields is not empty. Following the
calculation comes the code snippet \CalcToGray; this changes the text color to
gray if the field is empty and to the normal color (usually black) otherwise.

The function AllowCalc() is defined for all options except for the nodljs option.

Let’s go to the examples. Build three fields (four actually), in the first two enter integers,
the other two fields compute their sum.

①

②

③

④

Enter numbers into the first two text fields (① and ②), the totals of these two fields
appear in the last two fields (③ and ④). Total field ③ uses the recommended script
if(AllowCalc(cArray) (see line (6) above), whereas field ④ does not. Initially, they
both behave the same way until you press the reset button. For field ③ the gray hint
appears, for field ④ the number zero (0) appears. This is because the calculation was
allowed to go forward, and the calculated value is zero even through none of the de-
pendent fields have a value. If you want the gray hint in the total field, you must use
the conditional if(AllowCalc(cArray).6

3.3. Changing the colors for gray hints

For the fields in which the gray hint scripts are used, there are two colors that are
relevant, the normal color (defaults to black) and the gray color (defaults to light gray).
The command \normalGrayColors{〈normalcolor〉}{〈graycolor〉} sets this pair of
colors. The arguments for \normalGrayColors are JavaScript colors; they may be
in any of the following four forms: (1) a JavaScript color array ["RGB",1,0,0]; (2) a
predefined JavaScript color, such as color.red; (3) a declared (or named) LATEX color
such as red; or (4) a non-declared LATEX color such as [rgb]{1,0,0}. If the package
xcolor is not loaded, only methods (1) and (2) are supported.

The package default is \normalGrayColors{color.black}{color.ltGray}. The
predefined JavaScript colors are,

6Hence, don’t use the nodljs option.

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

Creating a form field with a gray hint 7

Color Models
GRAY RGB CMYK

color.black color.red color.cyan
color.white color.green color.magenta
color.dkGray color.blue
color.gray
color.ltGray

All these colors are defined in the LATEX color packages, except for possibly dkGray,
gray, and ltGray. These three are defined in grayhints.

We repeat the ‘First Name’ example with different declared colors. We begin by
declaring,

\normalGrayColors{blue}{magenta}

then build a ‘gray hinted’ field,

3.4. Remarks on using Adobe built-in formatting functions

The grayhints package (as well as does insdljs) offers alternating naming of the Adobe
built-in formatting functions. As a general rule, all Adobe built-in format, validate, and
calculation functions that begin with ‘AF’ are given alternate names that begin with
‘EF’. More specifically, Table 1 lists the Adobe built-in formatting functions and their
alternative names. The purpose of these alternate names is to allow the JavaScript
developer to access the scripts through the Acrobat user-interface.

You can learn more about the ‘AF’ versions and their arguments at the AcroTEX Blog
web site; in particular, carefully read the article http://www.acrotex.net/blog/?p=
218.

(a) Using AFNumber_Format (b) Using EFNumber_Format

Figure 1: Format tab: ‘AF’ versus ‘EF’ functions

http://blog.acrotex.net
http://www.acrotex.net/blog/?p=218

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

8

Adobe function name Alternate function name LATEX command7

AFNumber_Keystroke EFNumber_Keystroke \NumKey
AFNumber_Format EFNumber_Format \NumFmt
AFPercent_Keystroke EFPercent_Keystroke \PercentKey
AFPercent_Format EFPercent_Format \PercentFmt
AFDate_Keystroke EFDate_Keystroke \DateKey
AFDate_Format EFDate_Format \DateFmt
AFDate_KeystrokeEx EFDate_KeystrokeEx \DateKeyEx
AFDate_FormatEx EFDate_FormatEx \DateFmtEx
AFTime_Keystroke EFTime_Keystroke \TimeKey
AFTime_Format EFTime_Format \TimeFmt
AFTime_FormatEx EFTime_FormatEx \TimeFmtEx
AFSpecial_Keystroke EFSpecial_Keystroke \SpecialKey
AFSpecial_Format EFSpecial_Format \SpecialFmt
AFSpecial_KeystrokeEx EFSpecial_KeystrokeEx \SpecialKeyEx
AFRange_Validate EFRange_Validate \RangeValidate
AFSimple_Calculate EFSimple_Calculate \SimpleCalc
AFMergeChange EFMergeChange \MergeChange

Table 1: Built-in formatting commands

Figure 1 shows the impact of using the ‘EF’ functions. On the left, AFNumber_Format
is used to format a number field that uses gray hints using the code

AFNumber_Format(0,1,0,0,"",true)\r\FmtToGray

As can be seen in sub-figure (a), or more accurately not seen, the code is not seen
through the user-interface of Acrobat. In sub-figure (b) the underlying code is seen (and
therefore editable through the user-interface) because the ‘EF’ version of the function
was used:

\try{EFNumber_Format(0,1,0,0,"",true)}catch(e){}\r\FmtToGray

Note this code is wrapped in a try/catch construct; this is optional. The insdljs pack-
age defines a helper command \dlTC to do the wrapping for you:

\dlTC{EFNumber_Format(0,1,0,0,"",true)}\r\FmtToGray

When using pdflatex or xelatex, try/catch appears not to be needed, but when Adobe
Distiller is used, Acrobat throws an exception when the file is first created. The try/
catch suppresses (catches) the exception.

4. Extending the functionality of grayhints

The ‘gray hints’ technique works well with fields that require special formatting such
as the ones provided by built-in formats of Adobe Acrobat, these formats are Number,

7These commands are explained in Section 4

T
he

 g
ra

yh
in

ts
 P

ac
ka

ge

9

Percentage, Date, Time, Special, and Custom. How ‘gray hints’ functions when one of
these special formats is used may be acceptable, but if not, we offer an alternative. We
begin by presenting two date text fields. The one on the left is the default, the one on
the right is ‘enhanced.’8

1 \textField[\textColor{\matchGray}
2 \TU{Enter a date of your choosing}\AA{%
3 \AAOnFocus{\JS{\FocusToBlack}}
4 % Using the Adobe Built-in functions directly
5 \AAKeystroke{%
6 AFDate_KeystrokeEx("yyyy/mm/dd");\r
7 \KeyToGray}
8 \AAFormat{AFDate_FormatEx("yyyy/mm/dd");\r
9 \FmtToGray{yyyy/mm/dd}}

10 \AAOnBlur{\JS{\BlurToBlack}}
11 \AACalculate{\CalcToGray}
12 }]{Datefield1}{1in}{11bp}

Figure (a): Using Adobe built-in functions

1 \textField[\textColor{\matchGray}
2 \TU{Enter a date of your choosing}\AA{%
3 \AAOnFocus{\JS{\FocusToBlack}}
4 % Using a customized version of Adobe built-in
5 % functions, with LATEX access
6 \AAKeystroke{\DateKeyEx("yyyy/mm/dd");\r
7 \KeyToGray}
8 \AAFormat{\DateFmtEx("yyyy/mm/dd");\r
9 \FmtToGray{yyyy/mm/dd}}

10 \AAOnBlur{\JS{\BlurToBlack}}
11 \AACalculate{\CalcToGray}
12 }]{Datefield2}{1in}{11bp}

Figure (b): Using LATEX format commands

Try entering a bogus date, such as the number ‘17’. The two fields operate identically
when you then commit your date by clicking your mouse outside the fields. However,
the behavior of these two fields differ when you commit your bogus date by pressing
the Enter key. For Figure (a), the template ‘yyyy/dd/mm’ appears in black, whereas, for
Figure (b), the phrase ‘continue editing’ appears in black. The latter is the ‘enhanced’
behavior of the fields that use the gray hints code.

Remarks on the LATEX format commands. The difference in the two code snippets (Fig-
ures (a) and (b)) is seen in lines (6) and (8) of Figure (b). In these two lines we use the
special \DateKeyEx and \DateFmtEx commands that ultimately call the Adobe built-
in functions, but when these special commands are used, we can better manage what
happens when the Enter key is pressed. The document author is strongly encouraged
to use the LATEX commands in the last column on the right of Table 1, instead of using
the Adobe built-ins, as is done in Figure (a), or their ‘EF’ counterparts.9

The grayhints now defines \EnterCommitFailEvent and \CommitSuccessEvent
to customize the user experience when Enter key is pressed (as opposed to leaving
the field by clicking in white space, or tabbing away from the field). See the sample
files gh-fmts-eforms for instructions to use these two commands. We present a finalgh-fmts-eforms

referenced example, where the ‘Enter’ events have been changed.

(enter ‘17’ then press enter)

This example appears in the gh-fmts-eforms.tex sample file.

5. My retirement

Now, I simply must get back to it. DPS
8The example that follows is taken from gh-fmts-forms.tex where you will find additional discussion.
9Some of these LATEX commands use the ‘AF’ built-in (mostly for the formate events) while others use

the ‘EF’ versions of the built-ins.

	Title Page
	Links to AcroTeX.Net
	http://www.acrotex.net
	http://blog.acrotex.net

	Table of Contents
	1 Introduction
	2 Package options
	3 Creating a form field with a gray hint
	3.1 Variable text field, no calculate script
	3.2 Variable text field, with calculate script
	3.3 Changing the colors for gray hints
	3.4 Remarks on using Adobe built-in formatting functions

	4 Extending the functionality of grayhints
	5 My retirement

	NameFirst1:
	DateField1:
	NameFirst2:
	NameFirst3:
	reset:
	Integer:
	First:
	Second:

	TotalNumbers:
	TotalNumbers1: 0
	NameFirst4:
	Datefield1:
	Datefield2:
	Datefield3:

