
The fp package

Author: Michael Mehlich∗

Contributions by: Denis Girou
Acknowledgment to: Denis Girou, Miroslav Balda,

Ricardo Sanchez Carmenes
Documentation: Peter Wang (based on the original ReadMe.txt file,

added examples to show syntax)

E-mails: mmehlich@semdesigns.com; michael@mehlich.com;
shuodaowang@gmail.com .

January 14, 2019

Abstract

Fixed point arithmetic for TEX with numbers ranging from
−999999999999999999.999999999999999999
to +999999999999999999.999999999999999999

Contents

1 Usage: 2

2 Basic functions: 2

3 Known bugs: 7

4 Copying: 7

∗Copyright ©1994 – 1999 Michael Mehlich. This package can be redistributed and/or mod-
ified under the terms of the LaTeX Project Public License Distributed from CTAN archives at
http://www.latex-project.org/lppl.txt either version 1 of the License, or any later version.

http://mirrors.ctan.org/macros/latex/contrib/fp/README
mailto:mmehlich@semdesigns.com
mailto:michael@mehlich.com
mailto:shuodaowang@gmail.com
http://www.latex-project.org/lppl.txt

1 Usage:

• LATEX 2ε:
\usepackage[<options>]fp
where the following options are known:

[nomessages]: don’t print messages about the functions that are just
computed.

[debug]: print debug messages (mainly for \FPupn).

• LATEX2.09:
include lfp.sty in the document preamble, i.e.
\documentstyle[...,lfp,...]...

• TEX:
\input fp.tex

• MsDos/Windows Users:
It may be necessary to rename some files such that they just have a length
of eight characters (plus a three character suffix). The following renaming
examples works for emtex:

Original name Name for emtex
defpattern.sty defpaern.sty

fp-addons.sty fp-adons.sty

fp-random.sty fp-radom.sty

2 Basic functions:

• \FPset#1#2: Defines a variable that you can later print.

• \FPprint#1: Prints the value of a variable.

Example:

\FPset\x{2} %sets x=2

$x=\x$.\\ %prints x=2

$x=\FPprint\x$.\\

x=\x.\\

x=\FPprint\x .

x = 2.
x = 2.
x=2.
x=2.

• The following commands are very straightforward:
binary and unary operations:

\FPadd#1#2#3 % #1 := #2+#3

\FPdiv#1#2#3 % #1 := #2/#3

\FPmul#1#2#3 % #1 := #2*#3

\FPsub#1#2#3 % #1 := #2-#3

\FPabs#1#2 % #1 := abs(#2)

2

\FPneg#1#2 % #1 := -#2

\FPmin#1#2#3 % #1 = min(#2,#3)

\FPmax#1#2#3 % #1 = max(#2,#3)

binary and unary relations:

\FPiflt#1#2...\else...\fi % #1 < #2 ?

\FPifeq#1#2...\else...\fi % #1 = #2 ?

\FPifgt#1#2...\else...\fi % #1 > #2 ?

\FPifneg#1 ...\else...\fi % #1 < 0 ?

\FPifpos#1 ...\else...\fi % #1 >= 0 ?

\FPifzero#1...\else...\fi % #1 = 0 ?

\FPifint#1 ...\else...\fi % #1 is integer ?

%repeat last test

\ifFPtest ...\else...\fi % repeat last test

Trigonometric functions (Note: only accepts float numbers for
the input variables):

\FPpi % 3.141592653589793238

\FPsin#1#2 % #1 := sin(#2)

\FPcos#1#2 % #1 := cos(#2)

\FPsincos#1#2#3 % #1 := sin(#3), #2 := cos(#3)

\FPtan#1#2 % #1 := tan(#2)

\FPcot#1#2 % #1 := cot(#2)

\FPtancot#1#2#3 % #1 := tan(#3), #2 := cot(#3)

\FParcsin#1#2 % #1 := arcsin(#2)

\FParccos#1#2 % #1 := arccos(#2)

\FParcsincos#1#2#3 % #1 := arcsin(#3), #2 := arccos(#3)

\FParctan#1#2 % #1 := arctan(#2)

\FParccot#1#2 % #1 := arccot(#2)

\FParctancot#1#2#3 % #1 := arctan(#3), #2 := arccot(#3)

3

Examples:

\FPset\x{-1}

\FPset\y{2}

\FPadd\xay\x\y

\FPmin\xoy\x\y

$x=\x, y=\y$ \\

\FPifgt\xay\y $x+y>y$.

\else $x+y<y$.\fi \\ \\ \\

The result $x+y$

\FPifint\xay is an integer.

\else is not an integer.

\fi\\ \\

$\min(x,y)=\xoy$.

x = −1, y = 2
x+ y < y.

The result x + y is an inte-
ger.

min(x, y) = −1.

• Solving equations:

\FPlsolve#1#2#3

% #1 := x with #2*x+#3=0

\FPqsolve#1#2#3#4#5

% #1,#2 := x with #3*x^2+#4*x+#5 = 0

\FPcsolve#1#2#3#4#5#6#7

% #1,#2,#3 := x with #4*x^3+#5*x^2+#6*x+#7 = 0

\FPqqsolve#1#2#3#4#5#6#7#8#9

% #1,#2,#3,#4 := x with #5*x^4+#6*x^3+#7*x^2+#8*x+#9 = 0

4

Example:

\FPset\ca{-4}

\FPset\cb{2}

\FPlsolve\res\ca\cb

The root for

$\ca x+\cb=0$ is\\

$x=\res$.

The root for −4x+ 2 = 0 is
x = 0.500000000000000000.

• Evaluate expressions:

\FPeval#1#2
% #1 := eval(#2) where eval evaluates the expression #2

Example:

\edef\x{11}

\FPeval\resulta{\x/2}

\FPeval{resultb}{clip(neg(x)/2)}

resulta = \resulta .\\

resultb = \resultb .\\\\

\FPeval\resulta{round(resulta:3)}

round(resulta:3) = \resulta.

resulta = 5.500000000000000000.
resultb = -5.5.

round(resulta:3) = 5.500.

Attentions:

– The #1 variable can be written as either “\resulta” or “{resulta}”,
but not “\resulta{}” in the above example.

– When referring to variables in the expression #2, one can use “\x”
or “\x{}”, or simply ”x” in the above example.

– The unary prefix operation “-” is not known, therefore one should
use the function neg() instead.

– All the results from \FPeval are real numbers so rounding may be
necessary.

Known operations:

+ - * / abs neg
pow root exp ln min max
e pi
round trunc clip
sin cos tan cot
arcsin arccos arctan arccot

Most of the operations are self-explanatory. A few notes here:

5

pow(#1,#2) returns #2 to the power of #1
root(#1,#2) returns the #1th root of #2
exp(#1) returns e (defined below) to the power of #1
ln(#1) returns ln(#1) (base e)
min(#1,#2) returns minimum of #1 and #2
e returns e = 2.718281828459045235
pi returns π = 3.141592653589793238
round(#1:#2) round #1 to #2 decimal places
trunc(#1:#2) truncate #1 to #2 decimal places
clip(#1) remove all the trailing “0”s in #1
sin(#1) sin of #1 in rad. Similarly for others
arcsin(#1) arcsin of #1

• Evaluate upn-expressions:

\FPupn#1#2 % #1 := eval(#2) where eval evaluates the

upn-expression #2

Known operations:
+,add,-,sub,*,mul,/,div,abs,neg,min,max, round,trunc,clip,e,exp,ln,pow,root,pi,sin,cos,
sincos,tan,cot,tancot,arcsin,arccos,arcsincos, arctan,arccot,arctancot,pop,swap,copy

where

pop: removes the top element
swap: exchanges the first two elements
copy: copies the top element

Examples:

\FPupn\result{17 2.5 + 17.5 - 2 1 + * 2 swap /}

is equivalent to

\result := ((17.5 - (17 + 2.5)) * (2 + 1)) / 2

and evaluates to

\def\result{-3.000000000000000000}

Afterwards the macro call

\FPupn\result{\result{} -1 * 0.2 + sin 2 round}

^^ the "{}" is necessary!

is equivalent to

\result := round_2(sin((\result * -1) + 0.2))

and evaluates to

\def\result{-0.06}

Example 2:

As "result" is an abbreviation of "\result{}" you may

write

\FPupn{result}{17 2.5 + 17.5 - 2 1 + * 2 swap /}

and

6

\FPupn{result}{result -1 * 0.2 + sin 2 round}

instead leading to the same results.

This is even true for other macro names using e.g. ”x” for ”\x{}” and so
on. But be careful with it. We may introduce new constants in further
versions overwriting these abbreviations.

3 Known bugs:

• Does not work with multido.sty/multido.tex

Reason:
multido uses the same macro names \FPadd and \FPsub
Recommended Solution:
Patch multido.tex, i.e. apply the following substitutions:
FPadd -> mdo@FPadd

FPsub -> mdo@FPsub

• Incompatibility with french style of babel.
This only affects macros using the colon (:)

Recommended Solution:
Load the fp-package before babel with french style
Other Possible Solution:
Use \catcode`\:=12 after loading babel with french style

• Others:
Currently not known, but, though we do not, we could give a warranty of
their existence . . .

4 Copying:

• Permission to use, copy, modify, and distribute this software and its doc-
umentation for any purpose and without fee is hereby granted, provided
that the above copyright notice, the above history with your modifica-
tions added, and this permission notice appear in all copies and modified
versions.

• The copyright holder disclaim all warranties with regard to this software,
including all implied warranties of merchantability and fitness, in no event
shall the copyright holder be liable for any special, indirect or consequen-
tial damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of this
software.

7

	Usage:
	Basic functions:
	Known bugs:
	Copying:

