
Customizing lists

with the

enumitem package

Javier Bezos*

Version 3.9
2019/06/20

Contents

1 Introduction 2

2 Quick reference 3

3 Keys 4
3.1 Label and cross references format . 4
3.2 Horizontal spacing of labels . 6
3.3 Numbering, stopping, and resuming . 9
3.4 Series . 10
3.5 Penalties . 11
3.6 Injecting code . 11
3.7 Description styles . 12
3.8 Compact lists . 12
3.9 “Wide” lists . 13
3.10enumerate-like labels . 13
3.11Generic keys and values . 14

4 Inline lists 14

5 Global settings 15

6 Size dependent settings 16

7 Cloning the basic lists 17

8 More about counters 18
8.1 New counter representation . 18
8.2 Restarting enumerates . 19

9 Package options 19

10The trivlist issue 19

11Samples 20

12Afterword 22
12.1LATEX lists . 22
12.2Known issues . 22
12.3What’s new in 3.0 . 23
12.4Bug fixes . 23
12.5Acknowledgements . 23

*For bug reports, comments and suggestions go to http://www.texnia.com/enumitem.html.

1

http://www.texnia.com/enumitem.html

NOTE Changes and new features with relation to version 3.5 are highlighted with New X.X .
The most recent features could be still unstable. Please, report any issues you find on
https://github.com/jbezos/enumitem/issues, which is better than just complaining on
an e-mail list or a web forum. Forking and pull requests are welcome.

WARNING Version 3.6 introduced two new keys: left and first. If your documents define
some series with these names, an error is raised. Just rename them, or set the package
option series=override.

1 Introduction

This package provides most of the flexibility you may want to customize the three basic list
environments (enumerate, itemize and description) and to design your own lists, with a
〈key〉=〈value〉 syntax:

• Fancy labels and fancy refs, including a syntax similar to that in the enumerate package.

• Alternative ways for positioning the label, with a new parameter (labelindent) and a
tab-like setting (left).

• Settings applied globally or only in one of the three types or even in a single list (including
\topsep).

• Inline lists.

• Several description styles (which fix some bad spacing, too).

• trivlists properly formatted.

• Gathering of lists to be treated like a unit, as well as counter resuming.

In the interface a sort of “inheritance” is used. You can set globally the behavior of lists and
then override several parameters of, say, enumerate and then in turn override a few parameters
in a particular instance. The values will be searched in the hierarchy.

The package extends the syntax of the lists to allow an optional argument where a set of
parameters in the form key=value are available. These keys are equivalent to the well known list
parameters. Please, see a LATEX manual for a description of them. Next sections explains the
extensions provided by enumitem.

• Vertical spacing:

– topsep

– partopsep

– parsep

– itemsep

• Horizontal spacing:

– leftmargin

– rightmargin

– listparindent

– labelwidth

– labelsep

– itemindent

EXAMPLE A straightforward example is:

2

Following Text

Item 2

Label

Item 1, Paragraph 2

-
\listparindent

-
\leftmargin

�
\rightmargin

Item 1

Label

-
\itemindent

�
\labelsep�

\labelwidth

Preceding Text

?

\topsep + \parskip [+ \partopsep]

?

\itemsep + \parsep

?
\parsep

?

\topsep + \parskip [+ \partopsep]

Figure 1: List parameters

\begin{itemize}[itemsep=1ex, leftmargin=1cm]

NOTE A way to see how these parameters work is with the layouts package (the manual is
named layman.pdf). See figure 1.

2 Quick reference

Some common settings. See the manual below for details.

• To remove the vertical space altogether in a list:

\begin{enumerate}[nosep]

• To remove the vertical space altogether in all lists:

\setlist{nosep}

• To start the label at the margin and the item text at the current parindent:

3

\begin{enumerate}[left=0pt .. \parindent]

• To configure the labels like in enumerate: include the package option shortlabels and
then, as a first element, write your label:

\begin{enumerate}[(1)]

• To continue the previous list, after a “pause”:

\begin{enumerate}[resume*]

• To use the three basic list in line: just add the package option inline and then the
environments enumerate*, itemize* and description*.

• To set a numeric label with parenthesis, but a cross-reference without them:

\begin{enumerate}[label=(\arabic*), ref=\arabic*]

3 Keys

This section describes the keys in displayed lists. Most of them are available in inline lists, where
further keys are available (see 4).

WARNING If the value is completely enclosed in braces, they are stripped off. If you want the
braces, they must be duplicated. This is the default behavior of keyval, which enumitem
just emulates.

3.1 Label and cross references format

label=〈commands〉

Sets the label to be used in the current level. A set of starred versions of \alph, \Alph,
\arabic, \roman and \Roman, without argument stand for the current counter in enumerate.1 It
works with \value, too (provided the widest label is not to be computed or widest* is used, see
below).

NOTE If you prefer setting labels like the enumerate package, use “short labels” (see section
3.10).

EXAMPLE The following prints a), b), and so on (this is a standard style in Spanish, and
formerly used by Chicago, too).

\begin{enumerate}[label=\emph{\alph*})]

WARNING The value of label is a moving argument, and fragile commands must be protected
except the counters. Because of that, use of \value is somewhat tricky, because \the or
\ifnum expects an actual value, which is not the case when label is being processed to
replace internally the * by the form with the counter argument. The best solution is usually
encapsulating the logic inside a new “counter” with the help of \AddEnumerateCounter.2

EXAMPLE A fancier example (which looks ugly, but it is intended only to illustrate what is
possible; requires color and pifont):

1Actually, the asterisk is currently the argument but things may change. Consider them as starred variants and follow
the corresponding syntax.

2Which is admittedly somewhat convoluted. A better way to accomplish this is on the way.

4

\begin{enumerate}[label=\protect\fcolorbox{blue}{yellow}{\protect\ding{\value*}}]

label*=〈commands〉

Like label but its value is appended to the parent label. For example, the following defines a
legal list (1., 1.1., 1.1.1., and so on):

\newlist{legal}{enumerate}{10}
\setlist[legal]{label*=\arabic*.}

ref=〈commands〉

By default, label sets also the form of cross references and \the... (overriding the settings
in parent hierarchical levels), but you can define a different format with this key. For example, to
remove the right parenthesis:

\begin{enumerate}[label=\emph{\alph*}), ref=\emph{\alph*}]

NOTE In both label and ref, the counters can be used as usual. So, and provided the current
level is the second one:

\begin{enumerate}[label=\theenumi.\arabic*.]

or

\begin{enumerate}[label=\arabic{enumi}.\arabic*.]

NOTE The labels are not accumulated to form the reference. If you want, say, something like
1.a from 1) as first level and a) as second level, you must set it with ref. You may use
\ref{level1}.\ref{level2} with appropriate ref settings, but as Robin Fairbairns points
out in the TEX FAQ:

. . . [that] would be both tedious and error-prone. What is more, it would be
undesirable, since you would be constructing a visual representation which is
inflexible (you could not change all the references to elements of a list at one fell
swoop).

This is sensible and I recommend to follow the advice, but sometimes you might want
something like:

... subitem \ref{level2} of item \ref{level1} ...

WARNING The value of ref is a moving argument, and fragile commands must be protected
except the counters.

font=〈commands〉 format=〈commands〉

Sets the label font. Useful when the label is changed with the optional argument of \item and
in description. The last command in 〈commands〉 can take an argument with the item label. In
description class setting are in force, so you may want begin with \normalfont. A synonymous
is format. Actually, this key may be used for any stuff to be executed at each \item, just before
the label.

5

align=left align=right align=parleft

How the label is aligned (with relation to the label box edges). Three values are possible:
left, the default right and parleft (a parbox of width \labelwidth with flush left text). The
parameters controlling the label spacing should be properly set, either by hand or more
conveniently with the * settings (see below):

\begin{enumerate}[label=\Roman*., align=left, leftmargin=*]

When the label box is supposed to have its natural width, use left.

\SetLabelAlign{〈value〉}{〈commands〉}

New align types can be defined (or the existing ones redefined) with \SetLabelAlign; the
predefined values are equivalent to:

\SetLabelAlign{right}{\hss\llap{#1}}
\SetLabelAlign{left}{#1\hfil}
\SetLabelAlign{parleft}{\strut\smash{\parbox[t]\labelwidth{\raggedright##1}}}

EXAMPLE Although primarily intended for the alignment, this commands has other uses (an
example is the provided parleft). For example, with the following all labels with
align=right are set as superscripts:

\SetLabelAlign{right}{\hss\llap{#1}}

A new name is also possible, of course.

NOTE If the last thing in the definition is a skip (typically \hfil), it is removed sometimes by
description. If for some reason you want to avoid this, just add \null at the end.

NOTE If you want the internal settings for align and font be ignored, you can override the
enumitem definition of \makelabel in before:

\begin{description}[before={\renewcommand\makelabel[1]{\ref{##1}}}]

Alternatively, define a macro and use \let.

3.2 Horizontal spacing of labels

The horizontal space in the left margin of the current level is distributed in the following way:3

labelindent labelwidth labelsep − itemindent itemindent

leftmargin

Here labelindent is a new parameter introduced by enumitem, described below. The rest are
those in standard LATEX.

Actually, the layout is more complex because the label box (ie, labelwidth) could stick into
the margin, which means labelindent takes a negative value.

NOTE Since \parindent is not used as such inside lists, but instead is set internally to either
\itemindent or \listparindent, when used as the value of a parameter enumitem returns
the global value, i. e., the value it has outside the outermost list.

NOTE New 3.6 If you find these parameters baffling, you are not alone. You can visualize them
by writing \DrawEnumitemLabel just before the first item (or in first), which draws 4 rules
from top to bottom, labelindent, labelwidth, labelsep, itemindent (thin if positive, thick
if negative); the leftmargin is marked with two vertical rules.

3Admittedly, these figures are not exactly the clearest possible, and I intend to improve them in a future release.

6

labelindent=〈length〉
\labelindent

This parameter is added in enumitem for the blank space from the margin of the enclosing
list/text to the left edge of the label box. This means there is a redundancy because one of the
parameters depends on the others, i.e., it has to be computed from the other values, as described
below. By default, the computed value is labelindent, even if explicitly set with some value (it
defaults to 0 pt). So, if you are setting it to some value, very likely you want to set some other
parameter to ! or *, because otherwise it is ignored.

There is a new counter length \labelindent.
The five parameters are related in the following way:

\leftmargin+ \itemindent = \labelindent+ \labelwidth+ \labelsep

left=〈labelindent〉
left=〈labelindent〉 .. 〈leftmargin〉

New 3.6 This is a convenience key to set quickly the most common layouts for the label. You
may regard it as a sort or “rule” with two tab stops: the start of the label and the start of the text
(both with relation to the normal side margin). With only 〈labelindent〉, the left margin (the
“start of text”) is computed with the labelsep. It internally resorts to widest, so the restrictions
of the letter with relation to description also applies here: you might need change the
computed parameter (eg, itemindent=* with align=left).

EXAMPLE Typical settings would be:

\begin{enumerate}[left= 0pt]
\begin{enumerate}[left= 0pt .. \parindent]
\begin{enumerate}[left= \parindent]
\begin{enumerate}[left= \parindent .. 2\parindent]
\begin{enumerate}[left= -\parindent .. 0pt]

NOTE The label width is set to the default widest one. If there are lists with Arabic numerals
≥ 10, you may want to set widest, too.

NOTE left=〈labelindent〉 sets leftmargin=*; left=〈labelindent〉 .. 〈leftmargin〉 sets
labelsep=*.

leftmargin=! itemindent=! labelsep=! labelwidth=! labelindent=!

Sets which value is to be computed from the others. The default is labelindent=!, but note
some keys set another value (wide and description styles). Computations are done after all keys
has been read. Explicit values are not lost, and so with the following hierarchical settings:

leftmargin=2em
labelindent=1em,leftmargin=!
labelindent=!

leftmargin is again 2em and labelindent is the computed parameter.

NOTE With align=right (the default), labelindent=! and labelwidth=! behave similarly in
practice.

leftmargin=* itemindent=* labelsep=* labelwidth=* labelindent=*

Like before, but in addition labelwidth is first set to the width of the current label, using the
default value of 0 in \arabic*, viii in \roman*, m in \alph* and similarly in uppercase forms
(these values can be changed with widest, see below). Examples are:

7

\begin{itemize}[label=\textbullet, leftmargin=*]
\begin{enumerate}[label=\roman*), leftmargin=*, widest=iii]
\begin{itemize}[label = \textbullet,

leftmargin = 2pc,
labelsep = *]

\begin{enumerate}[label = \arabic*.,
labelindent = \parindent,
leftmargin = 2\parindent,
labelsep = *]

The most useful are labelsep=* and leftmargin=*. With the former the item body begins at
a fixed place (namely, leftmargin), while with the latter begins at a variable place depending on
the label (but always the same within a list, of course).

NOTE Unfortunately, LATEX does not define a default labelsep to be applied to all lists—simply
the current value is used. With enumitem you can set default values for every list, as
described below, and so, if you want to make sure labelsep is under your control, all you
need is something like:

\setlist{labelsep=.5em}

NOTE labelwidth=* and labelwidth=! are synonymous. Use them with care, because they may
take negative values, which does not make sense (a warning is shown).

widest=〈string〉 widest*=〈integer〉 widest

To be used in conjunction with the *-values, if desired. It overrides the default value for the
widest printed counter. Sometimes, if lists are not very long, a value of a for \alph is more
sensible than the default m:

\begin{enumerate}[leftmargin=*, widest=a] % Assume standard 2nd level

With no value, the default is restored. With widest*, the string is built using 〈integer〉 as the
value of the counter (e.g., with \roman, widest=viii and widest*=8 are the same).

Since \value does not return a string but a number, widest and the * values cannot be used
with it. However, with widest*, being a number, it is allowed.

New 3.6 It can be used with itemize and description, too. However, since the latter does
some tricky formatting inside the label you might need change the computed parameter (eg,
itemindent=* with align=left).

labelsep*=〈length〉

Remember labelsep spans part of leftmargin and itemindent if the latter is not zero. This
is often somewhat confusing, so a new key is provided—with labelsep* the value is reckoned
from the left margin (it just sets \labelsep and then adds \itemindent to it, but in addition later
changes to itemindent are taken into account):

labelindent labelwidth labelsep* itemindent

leftmargin

labelindent*=〈length〉

Like labelindent, but it is reckoned from the left margin in the current list and not from that
in the enclosing list/text.

EXAMPLE A first pattern aligns the label with the surrounding \parindent while the item body
is indented depending on the label and a fixed labelsep:

8

labelindent = \parindent,
leftmargin = *

A fairly frequent variant is aligning the label with the surrounding text (remember
labelindent is 0pt by default if it is not the computed parameter):

leftmargin = *

The former looks better in the first level while the latter seems preferable in subsequent
ones. That can be easily set with

\setlist{leftmargin=*}
\setlist[1]{labelindent=\parindent} % Only the level 1

EXAMPLE A second pattern aligns the item body with the surrounding \parindent. In this case
(remember labelindent is the computed parameter if not set):

leftmargin = \parindent

EXAMPLE A third pattern would be the label aligned with \parindent, and the item body with
2\parindent:

labelindent = \parindent,
leftmargin = 2\parindent,
itemsep = *

Again, a variant would be the label aligned with the surrounding text, and the item body
with \parindent:

leftmargin = \parindent,
itemsep = *

3.3 Numbering, stopping, and resuming

start=〈integer〉

Sets the number of the first item.

resume

The counter continues from the previous enumerate, instead of being reset to 1.

\begin{enumerate}
\item First item.
\item Second item.
\end{enumerate}
Text.
\begin{enumerate}[resume]
\item Third item
\end{enumerate}

This is done locally. If you want global resuming, see next section on series.

resume*

Like resume but the options from the previous list are used, too. This option must be
restricted to the optional argument in a environment (this is the only place where it makes

9

sense). It should be used sparingly—if you are using it often, then very likely you want to define a
new list (see 7). Further keys are allowed, and in this case the saved options are overridden by
those in the current list (i.e., the position of resume* does not matters). If there is a series of a
certain list with resume*, options are taken from the list previous to the first one, except for
start.

EXAMPLE For example:

\begin{enumerate}[resume*, start=1] % or [start=1, resume*]

uses the keys in the previous enumerate, but restarts the counter.

3.4 Series

series=〈series-name〉
〈series-name〉 resume*=〈series-name〉 resume=〈series-name〉

Another method to continue lists is by means of the key series, so that they behave like a
unit. A list with key series is considered the starting list and its settings are stored globally, so
that they can be used later with resume/resume*. All these keys take a value with the series
name (which must be different from existing keys):

• resume=〈series-name〉 just continue numbering items in the series,

• resume*=〈series〉 also applies the settings of the starting list,

• 〈series〉, i.e., the series name used as a key, is an alternative to resume*=〈series〉.

EXAMPLE Consider:

\begin{enumerate}[label=\arabic*(a), leftmargin=1cm, series=l_after]
\item A
\item B
\end{enumerate}

You get: 1(a) 2(a). You can continue with:

\begin{enumerate}[label=\arabic*(b), resume*=l_after]
% or [label=\arabic*(b), l_after]

\item A
\item B
\end{enumerate}

You get: 3(b) 4(b). (But you can use start=1, if you like.)

Note you can add further arguments, which are executed after those saved at the starting list
and therefore take precedence over them – in particular, resume* itself takes precedence over a
start (e.g., start=1) in the the starting list.

NOTE Every time a series is started, several commands are defined internally. Thus, to avoid
wasting resources use the same name for non-overlapping series.

WARNING The package may introduce new keys in the future, so using directly 〈series〉 as a key
is a potential source of forward incompatibilities. However, it’s safe using a non-letter
character other than hyphen or star in the key name (e.g., !notes or m_steps), as well as
uppercase letters and digits, because enumitem will never use them. New 3.7 If you have
defined some series with an all lowercase name and a new conflicting key has been
introduced, an alternative to changing their names is the package option series=override
(the error message is Invalid series name ‘key’). With it series names take precedence
over predefined keys – but use it only when absolutely necessary.

10

3.5 Penalties

beginpenalty=〈integer〉 midpenalty=〈integer〉 endpenalty=〈integer〉

Set the penalty at the beginning of a list, between items and at the end of the list,
respectively. Please, refer to your LATEX or TEX manual about how penalties control page breaks.
Unlike other parameters, when a list starts their values are not reset to the default, thus they
apply to the child lists.

3.6 Injecting code

before=〈code〉 before*=〈code〉

Execute code before the list starts (more precisely, in the second argument of the list
environment used to define them). The unstarred form sets the code to be executed, overriding
any previous value, while the starred one adds the code to the existing one (in the setting
hierarchy, see below, not with relation to the enclosing list/text). It can contain, say, rules and
text, but this has not been extensively tested. All calculations have been finished, and you can
access and manipulate the list parameters.

EXAMPLE To have both margins (left and right) set to the widest label:

\setlist{leftmargin=*, before=\setlength{\rightmargin}{\leftmargin}}

after=〈code〉 after*=〈code〉

Same, but just before the list ends.

first=〈code〉 first*=〈code〉

New 3.6 Same, but as the very first thing in the list body, so that

\begin{itemize}[first=〈code〉]

is the same as

\begin{itemize}
〈code〉

EXAMPLE With first you can define your own environments for displayed material. A trivial
example is:

\newlist{letter}{itemize}{1}
\setlist[letter]{first=\item[]\itshape, rightmargin=\leftmargin}

Here there is no need for a label, because it is not used.

\EnumitemId

New 3.7 To help in some tasks, a unique numeric identifier is assigned to each list, returned
by \EnumitemId.

EXAMPLE Here is an example of how to combine a \label with \EnumitemId, and after to
automatically set the width of the list label to the widest one (provided the ref is the same
as the label):4

4See https://tex.stackexchange.com/questions/29322/how-to-make-enumerate-items-align-at-left-margin.

11

\SetEnumitemKey{widestlabel}
{labelwidth = \widthof{\ref{enum-\EnumitemId}},
after = \label{enum-\EnumitemId}}

Then just use the key widestlabel.

EXAMPLE Reverse counting is also doable, but somewhat trickier, and we need some “external”
help. Here is a possible solution, but not the only one (and very likely not even the best –
for example, start is in fact no-op).

\usepackage{calc,cleveref,crossreftools}
\crtrefundefinedtext{0}

\newcounter{revcount}
\newcommand\revcounter[1]{%

\setcounter{revcount}{1+\crtcrefnumber{enum-\EnumitemId}-\value{#1}}}
\AddEnumerateCounter\revcounter\revcounter{} % the 2nd is dummy

\SetEnumitemKey{revarabic}
{label = \revcounter*(\arabic{revcount}),
ref = (\arabic{revcount}),
after = \label{enum-\EnumitemId}}

Note ref must be set separately, because \revcounter is not expandable.

3.7 Description styles

A key available in description.

style=〈name〉

Sets the description style. 〈name〉 can be any of the following:

standard Like description in standard classes, although with other classes it could be
somewhat different. The label is boxed. Sets itemindent=!.

unboxed Much like the standard description, but the label is not boxed to avoid uneven spacing
and unbroken labels if they are long. Sets itemindent=!.

nextline If the label does not fit in the margin, the text continues in the next line, otherwise it is
placed in a box of width \leftmargin − \labelsep, i.e., the item body never sticks into the
left margin. Sets labelwidth=!.

sameline Like nextline but if the label does not fit in the margin the text continues in the same
line. Same as style=unboxed,labelwidth=!.

multiline The label is placed in a parbox whose width is leftmargin, with several lines if
necessary. Same as style=standard,align=parleft,labelwidth=!.

WARNING 1. Mixing boxed and unboxed labels has not a well-defined behavior.

2. When nesting list all combinations are allowed but not all make sense.

3. Nesting nextline lists is not supported (it works, but its behavior might change in the
future, because the current one is not what one could expect).

3.8 Compact lists

noitemsep nosep

The key noitemsep kills the space between items and paragraphs (i.e., itemsep=0pt and
parsep=0pt), while nosep kills all vertical spacing.5

5The key nolistsep, now deprecated, introduced a thin stretch, which was not the intended behavior.

12

3.9 “Wide” lists

wide
wide=〈parindent〉

With this convenience key, the leftmargin is null and the label is part of the text—in other
word, the items look like ordinary paragraphs.6 Here labelsep sets the separation between the
label and the first word. It is equivalent to

align=left, leftmargin=0pt, labelindent=\parindent,
listparindent=\parindent, labelwidth=0pt, itemindent=!

With wide=〈parindent〉 you may set at once another value instead of \parindent. Of course,
these keys can be overridden after wide, too; for example, remembering that with left-aligned
labels the text is pushed if the they are wider than labelwidth, you can set labelwidth=1.5em
for a minimal width, or instead of itemindent=! you may prefer itemindent=*, which sets the
minimal width to that of widest label. In level 2 you may prefer labelindent=2\parindent, and
so on. You may also want to combine it with noitemsep or nosep.

3.10 enumerate-like labels

shortlabels (package option)

With the package option shortlabels you can use an enumerate-like syntax, where A, a, I, i
and 1 stand for \Alph*, \alph*, \Roman*, \roman* and \arabic*. This is intended mainly as a
sort of compatibility mode with the enumerate package, and therefore the following special rule
applies: if the very first option (at any level) is not recognized as a valid key, then it will be
considered a label with the enumerate-like syntax. For example:

\begin{enumerate}[i), labelindent=\parindent, labelsep=*]
...
\end{enumerate}

You may want to set ref, too, if different from the label.
Although perhaps not so useful, you can omit label= in the itemize environment under

similar conditions, too:

\begin{itemize}[\textbullet]
...
\end{itemize}

\SetEnumerateShortLabel{〈key〉}{〈replacement〉}

With this command, you can define new keys (or redefine them), which is particularly useful
for enumerate to be adapted to specific typographical rules or to extend it for non-Latin scrips.
Here 〈replacement〉 contains one of the starred versions of counters.

EXAMPLE For example:

\SetEnumerateShortLabel{i}{\textsc{\roman*}}

redefines i so that items using this key are numbered with small caps roman numerals.

NOTE The key has to be a single character.
6fullwidth is deprecated.

13

3.11 Generic keys and values

\SetEnumitemKey{〈key〉}{〈replacement〉}

With this command you can create your own (valueless) keys. Keys so defined can then be
used like the others.

EXAMPLE With

\SetEnumitemKey{midsep}{topsep=3pt, partopsep=0pt}

you may write

\begin{enumerate}[midsep]

EXAMPLE Another example is multicolumn lists, with multicol:

\SetEnumitemKey{twocol}{
itemsep = 1\itemsep,
parsep = 1\parsep,
before = \raggedcolumns\begin{multicols}{2},
after = \end{multicols}}

Here, the settings for itemsep and parsep kill the stretch and shrink parts, which in this
case improves the result. Of course, you may want to define a new list.

WARNING The package may introduce new keys in the future, so \SetEnumitemKey is a
potential source of forward incompatibilities. However, it’s safe using a non-letter
character other than hyphen or star in the key name (e.g., :name or 2_col), as well as
uppercase letters and digits, because enumitem will never use them.

\SetEnumitemValue{〈key〉}{〈string-value〉}{〈replacement〉}

This commands provides a further abstraction layer for the 〈key〉=〈value〉 pairs. With it you
can define logical names which are translated to the actual value. For example, with:

\SetEnumitemValue{label}{numeric}{\arabic*.}
\SetEnumitemValue{leftmargin}{standard}{\parindent}

you might say:

\begin{enumerate}[label=numeric, leftmargin=standard]

So, you can left to the final design what label=numeric means.

4 Inline lists

Inline lists are “horizontal” lists set as ordinary text inside a paragraph. With this package you
can create inline lists, as explained below, with \newlist, which have their own labels and
counters. However, very often inline versions of standard lists, with the same labeling schema,
will be enough – the package option inline does that.

WARNING Items are boxed, so floats are lost and nested lists are not allowed (remember many
displayed elements are defined as lists). Display math is forbidden too, and due to an
optimization done by TEX when building lists, explicit hyphenation may be wrong.7 There
was a reason for this default setting, namely, this feature was mainly devised for short
items (a few words), and the parameter itemjoin* could be useful for logical markup. To
overcome these limitations, you may set mode=unboxed, described below.

7A Knuthian “premature optimization”? Who knows, but anyway LuaTEX has removed it, so hyphenation with this engine
should be correct.

14

inline (package option)
enumerate* itemize* description* (environments)

With the package option inline, three environments for inline lists are defined: enumerate*,
itemize*, and description*. They emulate the behavior of paralist and shortlst in that labels
and settings are shared with the displayed (ie, “normal”) lists enumerate, itemize and
description, respectively (however, remember resuming is based on environment names, not on
list types). This applies only to those created with inline – inline lists created with \newlist as
described below are independent and use their own labels and settings.

NOTE Note inline is not required if you do not need the inline versions of standard lists, but
instead you define your own standalone inline lists with \newlist.

WARNING Settings for these three environments as defined by inline are shared with the
displayed variants, so they cannot be redefined directly with \newlist. Trying to do it
raises a cryptic error. If you need separate setting, define them with \newlist and not with
inline.

itemjoin=〈string〉 itemjoin*=〈string〉 afterlabel=〈string〉

Format is set with keys itemjoin (default is a space), and afterlabel (default is
\nobreakspace, ie, ~). An additional key is itemjoin*, which, if set, is used instead of itemjoin
before the last item.

itemjoin is ignored in vertical mode (i.e., in mode unboxed and just after a quote, a
displayed list and the like).

EXAMPLE With

before=\unskip{: }, itemjoin={{; }}, itemjoin*={{, and }}

the following punctuation between items is used:

Blah blah: (a) one; (b) two; (c) three, and (d) four. Blah blah

mode=unboxed mode=boxed

If using floats, lists or displayed math inside inline lists is important, use an alternative
“mode”, which you can activate with mode=unboxed (the default is mode=boxed). With it, floats
may be used freely, but misplaced \items are not caught and itemjoin* is ignored (a warning is
written to the log about this fact).

5 Global settings

Global changes, to be applied to all of these list, are also possible:

\setlist[enumerate,〈levels〉]{〈format〉}
\setlist[itemize,〈levels〉]{〈format〉}
\setlist[description,〈levels〉]{〈format〉}
\setlist[〈levels〉]{〈format〉}

Where 〈level〉 is the list level (one or more) in list, and the corresponding levels in
enumerate and itemize.8 With no 〈levels〉, the format applies to all of them. Here ‘list’ does not
mean any list but only the three ones handled by this package, and those redefined by this
package or defined with \newlist (see below). For example:

8\setenumerate, \setitemize and \setdescription are deprecated.

15

\setlist{noitemsep}
\setlist[1]{labelindent=\parindent} % < Usually a good idea
\setlist[itemize]{leftmargin=*}
\setlist[itemize,1]{label=\triangleleft}
\setlist[enumerate]{labelsep=*, leftmargin=1.5pc}
\setlist[enumerate,1]{label = \arabic*.,

ref = \arabic*}
\setlist[enumerate,2]{label = \emph{\alph*}),

ref = \theenumi.\emph{\alph*}}
\setlist[enumerate,3]{label = \roman*),

ref = \theenumii.\roman*}
\setlist[description]{font=\sffamily\bfseries}

These setting are read in the following order: list, list at the current level,
enumerate/itemize/description, and enumerate/itemize/description at the current level; if a key
appears several times with different values, the last one, i.e., the most specific one, is applied. If
we are resuming a series or a list with resume*, the saved keys are then applied. Finally, the
optional argument (except resume*), if any, is applied.

LATEX provides a set of macros to change many of these parameters, but setting them with the
package is more consistent and sometimes more flexible at the cost of being more “explicit” (and
verbose).

The list specification can contain variables and counters, provided they are expandable, and
counters are calc-savvy, so that if you load this package you can write things like:

\newcount{toplist}
\setcount{toplist}{1}
\newcommand{\mylistname}{enumerate}
\setlist[\mylistname,\value{toplist}+1]{labelsep=\itemindent+2em]

This allows defining lists with the help of loops.

WARNING It seems there is no way to catch a misspelled name in \setlist or \newlist, and a
meaningless error “Missing number, treated as zero” is raised.

6 Size dependent settings

New 3.6 For settings depending on the font size, in most cases all you need are relative units
like ex or em. Sometimes, you may want discrete steps, and a special syntax allows them.

The following package option is required for making use of this feature.

sizes (package option)

Lengths can contain size-based settings as follows (the value before the first < is a default).

\setlist{
topsep = 20pt <-10> 6pt <10-> 40pt,
leftmargin = <-10> 0cm <10> 1cm <10-> 2cm ,
rightmargin = <-10> 0cm <10> 1cm <10-> 2cm ,
}

Names are accepted, too: script, tiny, footnote, small, normal, large, Large, LARGE, huge,
Huge (ie, remove ‘size’ from the LATEX name if necessary). For example:

\setlist{
topsep = 20pt <-normal> 6pt <normal-> 40pt,
leftmargin = <-normal> 0cm <normal> 1cm <normal-> 2cm ,
rightmargin = <-normal> 0cm <normal> 1cm <normal-> 2cm ,
}

16

Single values take precedence over ranges (i. e., specific takes precedence over generic). In
ranges, the last match wins. The range a-b is a ≤ size < b (the lower bound is included, but not
the upper one). These rules allow in the examples above the setting for 10 or normal in the
logical place. Remember nominal sizes are not always the real sizes – for example, with option
11pt, \normalsize (and normal) is 10.95. You may precede a value with several single qualifiers
like <small><normal>12pt.9 A value before the first <..> is considered a default value.

NOTE For efficiency reasons, named sizes are assigned only once, when enumitem is loaded, in
the assumption they are set by the class, or a local style loaded previously.

\SetEnumitemSize{〈name〉}{〈selector〉}

New 3.7 If sizes are modified after loading enumitem or you are using a class with non
standard sizes (or even you just want another names), they can be set or reset with the following
tool.

EXAMPLE A trivial example:

\SetEnumitemSize{normal}{\normalsize}
\SetEnumitemSize{large}{\large}

\setlist<〈size〉>[〈names〉,〈levels〉]{〈keys/values〉}

New 3.7 An extension to \setlist described below which adds the definitions, but only for
the given size (either single or a range). The precedence rules for sizes also apply here (so that
the order of \setlist’s are relevant), and size dependent keys as defined by this procedure take
precedence over the rest of the keys. For example:

\setlist<-normal>[enumerate]{nosep}

However, only a size qualifier is accepted in each \setlist.

7 Cloning the basic lists

\newlist{〈name〉}{〈type〉}{〈max-depth〉}
\renewlist{〈name〉}{〈type〉}{〈max-depth〉}

The three lists can be cloned so that you can define “logical” environments behaving like
them. To define a new lists (or redefine a existing one), use \newlist (or \renewlist), where
〈type〉 is enumerate, itemize or description. Inline lists have types enumerate*, itemize*, and
description*.

NOTE The inline 〈type〉s are available always, even without the package option inline, which
just defines three environments of the corresponding types with those names.

If 〈type〉 is enumerate, a set of counters with names 〈name〉i, 〈name〉ii, 〈name〉iii,
〈name〉iv, etc. (depending on 〈max-depth〉) is defined.

Then you can use those counters in labels; e. g., if you have defined a list named steps, you
can define a label with:

label=\arabic{stepsii}.\arabic{stepsi}

WARNING Don’t use an arbitrarily large number for 〈max-depth〉, to avoid creating too many
counters and related macros.

9Note this syntax follows closely that of \DeclareFontShape, except in the precedence of single values.

17

WARNING For consistency with the counter naming schema in LATEX, list levels are also named
internally with a roman numeral, ie, 〈list〉i, 〈list〉ii, 〈list〉iii, etc. For this reason (both
counter and list names), defining two lists as, say, books and booksi leads to unexpected
results (currently without any warning, which should be fixed).

\setlist[〈names〉,〈levels〉]{〈keys/values〉}
\setlist*[〈names〉,〈levels〉]{〈keys/values〉}

After creating a list, you can (in fact you must, at least the label) set the new list with
\setlist:

\newlist{ingredients}{itemize}{1}
\setlist[ingredients]{label=\textbullet}
\newlist{steps}{enumerate}{2}
\setlist[steps,1,2]{label=(\arabic*)}

Names in the optional argument of \setlist say which lists applies the settings to, and
numbers say the level (it is calc-savvy). Several lists and/or several levels can be given, and all
combinations are set; e.g.:

\setlist[enumerate,itemize,2,3]{...}

sets enumerate/2, enumerate/3, itemize/2 and itemize/3. No number (or 0) means “all levels” and
no name means “all lists”; no optional argument means “all lists at all levels”.

The starred form \setlist* adds the settings to the previous ones. You may restrict the
additions to a certain font size, as explained in section 6. It must be noted the latter have a
higher precedence than the starred ones (i. e., settings added for some sizes take precedence
over settings added for all sizes, so that the most specific value for a key is applied).

\setlistdepth{〈integer〉}

By default, LATEX has a limit of 5 nesting levels, but when cloning lists this value may be too
short, and therefore you may want to set a new value. In levels below the 5th (or the deepest
defined by a class), the settings of the last are used (i.e., \@listvi).

8 More about counters

8.1 New counter representation

\AddEnumerateCounter{〈LaTeX command〉}{〈internal command〉}{〈widest label〉}

“Registers” a counter representation so that enumitem recognizes it. Intended mainly for non
Latin scripts, but also useful in Latin scripts.

EXAMPLE The following example defines a new counter with named ordinals:

\makeatletter
\def\ctext#1{\expandafter\@ctext\csname c@#1\endcsname}
\def\@ctext#1{\ifcase#1\or First\or Second\or Third\or
Fourth\or Fifth\or Sixth\fi}
\makeatother
\AddEnumerateCounter{\ctext}{\@ctext}{Second}

NOTE The counter names can contain @ even if not a letter without raising an error, as shown in
the example above.

A starred variant allows to give a number instead of a string as the widest label.

18

EXAMPLE If the widest label is that corresponding to the value 2:

\AddEnumerateCounter*{\ctext}{\@ctmoreext}{2}

This variant is to be preferred if the representation is not a plain string but it is styled, e.g.,
with small caps.

EXAMPLE An example for Russian is:

\AddEnumerateCounter*{\asbuk}{\c@asbuk}{7}

8.2 Restarting enumerates

\restartlist{〈list-name〉}

Currently you can get a continuous numbering through a document with:

\setlist[enumerate]{resume}

\restartlist has been added for restarting the counter in the middle of the document. For
example, you could emit a \restartlist when chapters start, so that there is a continuous
numbering through every chapter.

WARNING It is based solely in the list name, not the list type, which means enumerate* as
defined with the package option inline is not the same as enumerate, because its name is
different.

9 Package options

Besides inline, ignoredisplayed, sizes, series=override and shortlabels, the following
option is available.

loadonly

With this package option the package is loaded but the three lists are not redefined. You can
create your own lists, yet, or even redefine the existing ones.

10 The trivlist issue

LATEX uses a simplified version of list named trivlist to set displayed material, like center,
tabbing, theorem, etc., even if conceptually they are not lists. Unfortunately, trivlist uses the
current list settings, which has the odd side effect that changing the vertical spacing of lists also
changes sometimes the spacing in these environments.

This package modifies trivlist so that the default settings for the current level (ie, those set
by the corresponding clo files) are set again. In standard LATEX that is usually redundant, but if
we want to fine tune lists, not resetting the default values could be a real issue (particularly if
you use the nosep option).

A minimal control of vertical spacing has been made possible with10

• \setlist[trivlist,〈level〉]{〈keys/values〉}

but trivlist itself, which is not used directly very often, does not accept an optional argument.
This feature is not intended as a full-fledge trivlist formatter.

If for some reason you do not want to change trivlist and preserve the original definition,
you can use the package option ignoredisplayed.

New 3.6 If, on the other hand, you want to also apply the changes for all lists to trivlists,
just set the package option includedisplayed.

10\setdisplayed is deprecated.

19

11 Samples

In these samples we set \setlist{noitemsep}

En un lugar de la Mancha, de cuyo nombre no quiero acordarme,
no ha mucho tiempo que viv\’{\i}a un hidalgo de los de
\begin{enumerate}[labelindent=\parindent,leftmargin=*]

\item lanza en astillero,
\item adarna antigua,
\item roc\’{\i}n flaco, y
\item galgo corredor.

\end{enumerate}
Una olla de algo m\’{a}s vaca que carnero, salpic\’{o}n las m\’{a}s
noches, duelos y quebrantos los s\’{a}bados...

The rule shows labelindent.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

1. lanza en astillero,
2. adarna antigua,
3. rocín flaco, y
4. galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

With \begin{enumerate}[leftmargin=*] % labelindent=0pt by default.
The rule shows labelindent.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

1. lanza en astillero,
2. adarna antigua,
3. rocín flaco, y
4. galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

With \begin{enumerate}[leftmargin=\parindent].
The rule shows leftmargin.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

1. lanza en astillero,
2. adarna antigua,
3. rocín flaco, y
4. galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

With \begin{enumerate}[labelindent=\parindent, leftmargin=*, label=\Roman*., widest=III,
align=left].

The rule shows labelindent. Note

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

I. lanza en astillero,
II. adarna antigua,
III. rocín flaco, y
IV. galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

With \begin{enumerate}[label=\fbox{\arabic*}]. A reference to the first item is 1

20

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

1 lanza en astillero,

2 adarna antigua,

3 rocín flaco, y

4 galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

With nested lists.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme,
no ha mucho tiempo que viv\’{\i}a un hidalgo de los de
\begin{enumerate}[label=(\alph*), labelindent=\parindent,

leftmargin=*, start=12]
\item lanza en astillero,
\begin{enumerate}[label=(\alph{enumi}.\roman*), leftmargin=*, start=7]
\item adarna antigua,
\end{enumerate}
\item roc\’{\i}n flaco, y
\begin{enumerate}[label=(\alph{enumi}.\roman*), leftmargin=*, resume]
\item galgo corredor.
\end{enumerate}
\end{enumerate}
Una olla de algo m\’{a}s vaca que carnero, salpic\’{o}n las m\’{a}s
noches, duelos y quebrantos los s\’{a}bados...

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

(l) lanza en astillero,

(l.vii) adarna antigua,

(m) rocín flaco, y

(m.viii) galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

En un lugar de la Mancha, de cuyo nombre no quiero acordarme,
no ha mucho tiempo que viv\’{\i}a un hidalgo de los de
\begin{description}[font=\sffamily\bfseries, leftmargin=3cm,

style=nextline]
\item[Lo primero que ten\’{\i}a el Quijote] lanza en astillero,
\item[Lo segundo] adarna antigua,
\item[Lo tercero] roc\’{\i}n flaco, y
\item[Y por \’{u}ltimo, lo cuarto] galgo corredor.

\end{description}
Una olla de algo m\’{a}s vaca que carnero, salpic\’{o}n las m\’{a}s
noches, duelos y quebrantos los s\’{a}bados...

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

Lo primero que tenía el Quijote
lanza en astillero,

Lo segundo adarna antigua,
Lo tercero rocín flaco, y
Y por último, lo cuarto

galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

Same, but with sameline.

21

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

Lo primero que tenía el Quijote lanza en astillero,
Lo segundo adarna antigua,
Lo tercero rocín flaco, y
Y por último, lo cuarto galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

Same, but with multiline. Note the text overlaps if the item body is too short.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un
hidalgo de los de

Lo primero que
tenía el Quijote

lanza en astillero,
Lo segundo adarna antigua,
Lo tercero rocín flaco, y
Y por último, lo
cuarto

galgo corredor.

Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados...

12 Afterword

12.1 LATEX lists

As it is well known, LATEX predefines three lists: enumerate, itemize and description. This is a
very frequent classification which can also be found in, say, HTML. However, there is a more
general model based in three fields—namely, label, title, and body—, so that enumerate and
itemize has label (numbered and unnumbered) but no title, while description has title but no
label. In this model, one can have a description with entries marked with labels, as for example
(of course, this simple solution is far from satisfactory):

\newcommand\litem[1]{\item{\bfseries #1,\enspace}}
\begin{itemize}[label=\textbullet]
\litem{Lo primero que ten\’{\i}a el Quijote} lanza en astillero,
... etc.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que
vivía un hidalgo de los de

• Lo primero que tenía el Quijote, lanza en astillero,
• Lo segundo, adarna antigua,
• Lo tercero, rocín flaco, y
• Y por último, lo cuarto, galgo corredor.

12.2 Known issues

• List resuming is based on environment names, and when a \newenvironment contains a list
you may want to use \begin{〈list〉} and \end{〈list〉}. Using the corresponding low-level
commands (ie, \〈list〉 and \end〈list〉) is not an error, but it is your responsibility to make
sure the result is correct.

• The behavior of mixed boxed labels (including enumerate and itemize) and unboxed labels
is not well-defined. The same applies to boxed and unboxed inline lists (which could even
raise an error).

• Similarly, resuming a series and a list at the same time is allowed, too, but again its
behavior is not well-defined.

• (3.5.2) An incompatibility with 2.x has popped up – if you were using the optional argument
to pass a value to a \ref or other macro requiring expandable macros, an error is raised. A
quick fix is letting \makelabel to \descriptionlabel in before.

22

12.3 What’s new in 3.0

• Inline lists, with keys to set how items are joined (ie, the punctuation between items). Two
modes are provided: boxed and unboxed.

• \setlist is calc-savvy (eg, for use in loops), and you can set different lists and levels at
once.

• All lengths related to labels can take the value * (and not only labelsep and leftmargin).
Its behavior has been made consistent and there is new value ! which does not compute the
widest label.

• With \restartlist{〈list-name〉}, list counters can be restarted (in case you are using
resume).

• resume* can be combined with other keys.
• Lists can be gathered globally using series, so that they are considered a single list. To

start a series just use series=〈series-name〉 and then resume it with resume=〈series-name〉
or resume*=〈series-name〉.

• The “experimental” fullwidth has been replaced by a new key wide.
• \SetLabelAlign defines new align values.
• You can define “abstract” values (eg, label=numeric) and new keys.

• (3.2) start and widest* are calc-savvy.
• (3.2) \value can be used with widest*.
• (3.2) Some internal restrictions in \arabic and the like has been removed. It is more

flexible at the cost of having a more “relaxed” error checking.

12.4 Bug fixes

• Star values (eg, leftmargin=*) could not be overridden and new values were ignored.
• nolistsep as the first of several keys was not always recognized and therefore treated like

a short label (i.e., nol\roman*stsep).
• labelwidth did not always work (when there was a prior widest and *)
• With align=right the label and the following text could overlap.
• description did not get the correct list level.
• At some point (2.x?) \value* stopped working.
• (3.1) Unfortunately, xkeyval “kills” keyval, so the lattest has been replicated in enumitem.
• (3.3) Fixes a serious bug – with * neither itemize nor description worked.
• (3.4) Fixes bad spacing in mode boxed (misplaced \unskip before the first item and wrong

spacefactor between items).
• (3.4) nolistsep did not work as intended, but since the error has been there for several

years, a new key nosep is provided.
• (3.4) The issue with nolistsep with shortlabels (see above) was not fixed in all cases.

Hopefully now it is.
• (3.5.0) Fixed the fix related to the spacefactor between items.
• (3.5.0) Fixed a problem with nested boxed inline lists.
• (3.5.1) resume* only worked once, and subsequent ones bahaved like resume.
• (3.5.2) Fixed \setlist*, which didn’t work.

12.5 Acknowledgements

I wish to thank particularly the comments and suggestions from Lars Madsen, who has found
some bugs, too.

23

	Introduction
	Quick reference
	Keys
	Label and cross references format
	Horizontal spacing of labels
	Numbering, stopping, and resuming
	Series
	Penalties
	Injecting code
	Description styles
	Compact lists
	``Wide'' lists
	enumerate-like labels
	Generic keys and values

	Inline lists
	Global settings
	Size dependent settings
	Cloning the basic lists
	More about counters
	New counter representation
	Restarting enumerates

	Package options
	The trivlist issue
	Samples
	Afterword
	LaTeX lists
	Known issues
	What's new in 3.0
	Bug fixes
	Acknowledgements

