
Context sensitve ouline elements:
a manual for coseoul
Dynamic alteration of the document structure

September 1, 2011 Version 1.1

written by Michael Teubner, August 2011

Contents

1 Introduction 1

2 Working principle 2

3 Use cases 2

3.1 Collaborative work 2

3.2 Writing a thesis 3

3.3 Editing a compilation 4

4 Package options 4

4.1 Current level 4

5 Limitations 5

5.1 Min and max levels 5

5.2 Initial level 5

5.3 Structure warnings 5

5.4 Change levels 6

6 Developement history 6

6.1 Inspiration 6

6.2 First attempt 6

6.3 Current Version 7

6.4 Future Developement 7

7 Acknowledgements 7

7.1 The custom TOC 7

7.2 The name coseoul 8

7.3 This document 8

8 Code 9

8.1 Complete Code 9

8.2 Commented Code 10

9 Licence 12

1 Introduction

The commands used for document outlining in LaTEX are quite rigid. If you define a heading
to be at chapter level, it will remain at that level even when you move it to a different
part of your document. While this is desirable most of the time, there are some cases in
which a more flexible approach may be needed, like in collaborative work, when writing
comprehensive documents or when assembling a document from many different sources.
This package aims at providing means of such flexible outlining.

1

2 Working principle

Instead of specifying exactly at what level your outline element should appear, this package
provides relative commands for going up and down in the outline hierarchy. The commands
provided are:

• \levelup{<title>}
This command goes up one level in the document hierarchy, so depending on where
you are, this will insert an outline element <title> at one level above the current. So
if for instance written inside a section, this command will insert a new chapter.

• \leveldown{<title>}
This command goes down one level in the document hierarchy, so depending on where
you are, this will insert an outline element <title> at one level below the current. So if
for instance written inside a paragraph, this command will insert a new subparagraph.

• \levelstay{<title>}
This command stays at the current document hierarchy level, so depending on where
you are, this will insert an outline element <title> at the same as the current level. So
if for instance written inside a subsection, this command will insert a new subsection.

• \levelmultiup{<title>}{<levels>}
This goes up multiple levels in the document hierarchy, so depending on where you
are, this will insert an outline element <title> at a level differing by <levels> from
the current level. So if for instance writte \levelmultiup{title}{3} inside a
paragraph, this command will insert a new section. This may be used for situation in
which level skipping is required. While downwards you will go only one level, upwards a
skip of more than one may be required, for instance if you are in the last subsubsection
of a passage of your text and as you want to start a new passage you need to insert a
section.

3 Use cases

3.1 Collaborative work

Suppose you are writing a complex document where you collaborate with others (a book
on Mexican cacti, a documentation for your extensive software project or a term paper).
Hopefully you all could agree to use LaTEX, but still problems arise as you only see each
other about once a month. So during this month, all of you work on their respective parts,
but when meeting you decide to swap parts, raise the importance of some and lowering the
importance of others. Usually this would require rewriting outline elements, but with this
package you only need to move stuff to the right place and probably changing one or two
outline elements, all the others change accordingly as they are context sensitive, which may
save you a lot of work.

2

Lets say Alice and Bob are writing on that cactus book. Alice, touring northern Mexico,
wrote this:

\documentclass { scrartc l }
\usepackage { coseoul }
\begin { document }
\ leve lstay { Corynopuntia } % main

5 \leveldown { Grusonia aggeria } % sub
\lev lestay { Grusonia agglomerata } % sub
\lev lestay { Grusonia bulbispina } % sub
\end { document }

While Bob, scouting southern Mexico, wrote this:

\documentclass { scrreprt }
\usepackage { coseoul }
\begin { document }
\ leve lstay { Grusonia } % main

5 \leveldown { Grusonia bradtiana } % sub
\levelup { Marenopuntia } % main
\leve lstay { Grusonia marenae } % sub
\end { document }

Ideally, of cause, they would store their content including outline in seperate files, but this
should only be a small example. Alice, writing an article type document, would usually use
sections top level outline element, while Bob, who is writing a report style document, would
use sections. When combining their work either Alice (all one level up) or Bob (all one level
down) would have to rewrite their outline. Instead, Bob only changes his first element to
\levleup and they are ready to go!

\documentclass { scrartc l }
\usepackage { coseoul }
\begin { document }
% Alices contr ibut ion

5 \leve lstay { Corynopuntia } % main
\leveldown { Grusonia aggeria } % sub
\lev lestay { Grusonia agglomerata } % sub
\lev lestay { Grusonia bulbispina } % sub
% Bobs contr ibut ion

10 \levelup { Grusonia } % main , only changed command
\leveldown { Grusonia bradtiana } % sub
\levelup { Marenopuntia } % main
\leve lstay { Grusonia marenae } % sub
\end { document }

3.2 Writing a thesis

Suppose you are writing your master thesis, say on mobility management in Germany. You
are writing for quite some time and interviewed quite some people in different cities on the

3

topic. As you go, you realize that your initial outline, which made perfect sense at the time of
writing, now seems odd. Not that it is wrong, but some parts are condensed now and should
be subordinate to others, some portions are to be moved, recombined, edited or deleted, but
this will mess up your outline. If you considered that something like this might happen, you
used this package and have relatively little to do:

• to subordinate, just change \levelstay to \leveldown

• move portions to a new, more appropriate position. No matter what level they are now
on, worst case is you have to adjust it’s first outline command and that of the next
portion

• recombination is really like moving, two changes at most per portion, however long or
complex

3.3 Editing a compilation

Suppose you are an editor, responsible for some proceedings. The guy responsible for writing
a template that any participant should use was ill, now everyone submitted documents
outlined to their individual liking: structured in sections or chapters, some mistaking this
for a book and using parts. Now you are left with the mess, but fortunately, they all used
coseoul, so you \include all their documents and you are (almost) done!

4 Package options

There are no real options at this time.

4.1 Current level

While document classes defining chapters are initialized at that level, classes not defining
chapters are initialized at section level.

Normally, you would not want to set \currentlevel manually. However, you might want
to start a document with a \part, to achieve that you can do the following:
\setcounter{currentlevel}{<level>} where <level> can be:

7 for part level
6 for chapter level
5 for section level
4 for subsection level
3 for subsubsection level
2 for paragraph level
1 for subparagraph level

4

But be aware: if you set the level to chapter in a document not defining those, and immedi-
ately after use \levelstay, you will produce an error.

There will probably a function with named arguments in the future (see 5).

5 Limitations

5.1 Min and max levels

It would be desirable to specify minimum and maximum levels to use. Most people will not
want to use parts, paragraphs or even subparagraphs. Right now, all levels are uses, with
no chance of influence. I’m thinking of something like:

\usepackage[minlevel=subsubsection, maxlevel=chapter]{coseoul}

5.2 Initial level

Document classes with chapters are initialized at chapter level, classes without it are initial-
ized at section level. There should be a package option for that:

\usepackage[initlevel=section]{coseoul}

5.3 Structure warnings

When you use \leveldown are on the lowest level or use \levelup on the highest level,
the new element will still be set on the same level, as there are no lower or higher levels
which could be used. As this will possibly compromise your structure, there should be an
optional warning for such occurrence. So something like

. . .
\usepackage [warningstop , warningsbottom] { coseoul }
. . .
\levelup { part }
\levelup { above part }
. . .
\levelup { subparagraph }
\levelup { below subparagraph }

should result in:

I part
II above part (Warning: level above top)
...

5

subparagraph
below subparagraph (Warning: level below bottom)

Also entries in the log file would be nice.

5.4 Change levels

Manually changing the level is possible, but not comfortable, there should really be some
command like:

\setcurrentlevel{subsection}.

6 Developement history

6.1 Inspiration

The package is based on this question on tex.stackexchange.com. The user Speldosa
wanted to know if such flexible behaviour was possible, and so I started the development.
While the first version was quite straightforward and complicated, the big number of lines of
code made me think about my approach and totally redesign it.

6.2 First attempt

The very first version, although working yet, was in a well human readable but not elegant
form. It consisted of many, many \ifthenelse constructs which also had to be in the
right order. The current level was denoted by a string and therefore had to be redefined quite
often. As no standard level was defined, one of the absolute commands like \newchapter
had to be used. \levlemultiup did not exist yet, there also absolute commands had to
be used.

. . .
\newcommand{\ currentlevel } { }

\newcommand{\ levelup } [1]%
{ \ i f thenelse {\ equal {\ currentlevel } { c } }%

{\ chapter {#1}\renewcommand{\ currentlevel } { c } } { } %
\i f thenelse {\ equal {\ currentlevel } { s } }%
{\ chapter {#1}\renewcommand{\ currentlevel } { c } } { } %

. . .
\newcommand{\newchapter } [1]%

{\ chapter {#1}\renewcommand{\ currentlevel } { c } }
. . .

6

http://tex.stackexchange.com/questions/26181/create-context-sensitive-headings/
tex.stackexchange.com

6.3 Current Version

When I tried to expand the first version to all outline elements and also a \levlemultiup,
I realized that this would be (3 · 2 + 7 · 5) · 2 = 82 new lines of code, and that for achieving
relatively little, so I decided to rewrite the code from scratch. The indicator for the current
level (\currentlevel), formerly containing strings, is now a counter, thus operations on
levels now are arithmetic operations instead of string rewrites. Instead of defining separate
commands for each task (\levleup and the others), they are now derived from a general
command. \currentlevel is never set to chapter if used in a \documentclass not
defining it. \documentclasses defining chapters are initialized as such, while those which
do not are initialized at section level.

. . .
\newcommand{\chex } { }
\ i f thenelse {\ isundefined {\ chapter } }%

{\renewcommand{\chex } {N} } { \renewcommand{\chex } { Y } }
. . .
\newcounter { currentlevel }
. . .
\newcommand{\ findnewlevel } [1]%
{ \addtocounter { currentlevel } { #1 }%
. . .
\newcommand{\ levelchange } [2]%
{ \findnewlevel {#2}%

\i f thenelse {\value { currentlevel } = 1 } {\ subparagraph { # 1 } } { }%
. . .
\newcommand{\ levelup } [1] { \ levelchange { # 1 } { 1 } }
. . .

6.4 Future Developement

The current version, while being fully functional, has several shortcomings (see 5). I plan
on adding more features, but I don’t know when or to what extend, so better not wait for
changes. The current version is also maintained by Kraken at BitBucket.org

7 Acknowledgements

First of all, thanks to mahok, you first made me aware that something awesome like LaTEX
existed.

7.1 The custom TOC

The table of contents was modelled on an example from Elke and Michael Niedermair:
"LaTEX. Das Praxisbuch". Thanks for the example and the book as a whole, it’s what got

7

https://bitbucket.org/Kraken/coseoul/overview
https://bitbucket.org/
http://www.amazon.de/LaTeX-Das-Praxisbuch-Elke-Niedermair/dp/3772369308/ref=sr_1_3?s=books&ie=UTF8&qid=1314210321&sr=1-3

me started with LaTEX.

7.2 The name coseoul

I decided to go with the first two letters of each word in the phrase ’Context Sensitive Outline
Elements’, which would be ’CoSeOuEl’. Four vocals in a row was too much for my taste, so
my alternate ideas were ’consul’, ’console’, or something with ’Seoul’. As I’m not too much
of a fan of the Romans nor want to mislead anyone into thinking this was some kind of
command line tool, I decided to go with the Seoul idea. Although I have never been there,
what better reason is there to visit Seoul than to see the city I named my package after!

7.3 This document

This document does not use any of the features of coseoul, as you should be able to build
this documentation on your own. So you can install the package after you built and read
the manual.

8

8 Code

8.1 Complete Code

\ProvidesPackage { coseoul }
\RequirePackage { i f then }

\newcommand{\chex } { }
5

\newcounter { currentlevel }
% part = 7 chapter = 6 sect ion = 5
% subsection = 4 subsubsection = 3 paragraph = 2
% subparagraph = 1

10

\i f thenelse {\ isundefined {\ chapter } }%
{\renewcommand{\chex } {N}\setcounter { currentlevel } { 5 } }%
{\renewcommand{\chex } { Y}\setcounter { currentlevel } { 6 } }

15 \newcommand{\ findnewlevel } [1]% uppity (−1 down, 0 stay , 1 up , 2−6 multiup
{ \addtocounter { currentlevel } { #1 }%

\i f thenelse {\ equal {\chex } {N } }%
{ \ i f thenelse {\value { currentlevel } = 6}%

{ \ i f thenelse {#1 > 1} {\addtocounter { currentlevel } { 1 } }%
20 {\addtocounter { currentlevel } { − 1 } } } { } } { }%

\i f thenelse {\value { currentlevel } < 1 } {\ setcounter { currentlevel } { 1 } } { }%
\i f thenelse {\value { currentlevel } > 7 } {\ setcounter { currentlevel } { 7 } } { }%

}

25 \newcommand{\ levelchange } [2]% t i t l e , uppity
{ \findnewlevel {#2}%

\i f thenelse {\value { currentlevel } = 1 } {\ subparagraph { # 1 } } { }%
\i f thenelse {\value { currentlevel } = 2 } {\paragraph { # 1 } } { }%
\i f thenelse {\value { currentlevel } = 3 } {\ subsubsection { # 1 } } { }%

30 \i f thenelse {\value { currentlevel } = 4 } {\ subsection { # 1 } } { }%
\i f thenelse {\value { currentlevel } = 5 } {\ section { # 1 } } { }%
\i f thenelse {\value { currentlevel } = 6 } {\ chapter { # 1 } } { }%
\i f thenelse {\value { currentlevel } = 7 } {\ part { # 1 } } { }%

}
35

\newcommand{\ levelup } [1] { \ levelchange { # 1 } { 1 } }
\newcommand{\ leveldown } [1] { \ levelchange {#1} { −1} }
\newcommand{\ leve lstay } [1] { \ levelchange { # 1 } { 0 } }
\newcommand{\ levelmultiup } [2] { \ levelchange {#1 } { #2 } } %t i t l e , uppity

9

8.2 Commented Code

This section is mainly for people like me, who have never or seldomly created packages. So
if you are a deep magic wizard, please don’t take offence in my simplistic explanations.

1 \ProvidesPackage { coseoul }
2 \RequirePackage { i f then }

The first line tells LaTEX that this file provides the package coseoul. Note that the file name
doesn’t have to coincide with the package name, so foo.sty may provide a package bar. The
second line states that the package ifthen is required for this to work. So such commands
state dependencies on other packages.

4 \newcommand{\chex } { }
5

6 \newcounter { currentlevel }
7 % part = 7 chapter = 6 sect ion = 5
8 % subsection = 4 subsubsection = 3 paragraph = 2
9 % subparagraph = 1

10

11 \i f thenelse {\ isundefined {\ chapter } }%
12 {\renewcommand{\chex } {N}\setcounter { currentlevel } { 5 } }%
13 {\renewcommand{\chex } { Y}\setcounter { currentlevel } { 6 } }

First, a command \chex is initialized as empty, then a counter is initialized (as zero). Then
it is checked, if currently a command \chapter is defined. If it is not, \chex is set to
’N’ and the document is initialized at section level. If it is, then \chex is set to ’Y’ and the
document is initialized at chapter level.

15 \newcommand{\ findnewlevel } [1]% uppity (−1 down, 0 stay , 1 up , 2−6 multiup
16 { \addtocounter { currentlevel } { #1 }%

a new command \findnewlevel with one parameter is defined. The comment explains
which values it will take for which command. The number given in the argument is then
added to \currentlevel, thus changing the active level.

17 \i f thenelse {\ equal {\chex } {N } }%
18 { \ i f thenelse {\value { currentlevel } = 6}%
19 { \ i f thenelse {#1 > 1} {\addtocounter { currentlevel } { 1 } }%
20 {\addtocounter { currentlevel } { − 1 } } } { } } { }%

Here we have a triple nested \ifthenelse statement. The first two are used to check
whether we are at chapter level (currentlevel = 6) although chapter is undefined (\chex =
’N’). If this is the case, then dependant on whether we move level up or down (1 or -1), the
\currentlevel counter increased or decreased by one.

10

21 \i f thenelse {\value { currentlevel } < 1 } {\ setcounter { currentlevel } { 1 } } { }%
22 \i f thenelse {\value { currentlevel } > 7 } {\ setcounter { currentlevel } { 7 } } { }%

The level may range from 1 to 7. Therefore values outside that range are set to the respective
nearest value. This may cause undesired effects (see 5)

25 \newcommand{\ levelchange } [2]% t i t l e , uppity
26 { \findnewlevel {#2}%

A new command \levelchange is defined, which has two arguments, the title for the new
outline element and the desired change in level (labelled ’uppity’). Then the previously de-
fined \findnewlevel is called with the desired change in level.

27 \i f thenelse {\value { currentlevel } = 1 } {\ subparagraph { # 1 } } { }%
28 \i f thenelse {\value { currentlevel } = 2 } {\paragraph { # 1 } } { }%
29 \i f thenelse {\value { currentlevel } = 3 } {\ subsubsection { # 1 } } { }%
30 \i f thenelse {\value { currentlevel } = 4 } {\ subsection { # 1 } } { }%
31 \i f thenelse {\value { currentlevel } = 5 } {\ section { # 1 } } { }%
32 \i f thenelse {\value { currentlevel } = 6 } {\ chapter { # 1 } } { }%
33 \i f thenelse {\value { currentlevel } = 7 } {\ part { # 1 } } { }%

According to what value \currentlevle was changed by \findnewlevel, a new outline
element is inserted.

36 \newcommand{\ levelup } [1] { \ levelchange { # 1 } { 1 } }
37 \newcommand{\ leveldown } [1] { \ levelchange {#1} { −1} }
38 \newcommand{\ leve lstay } [1] { \ levelchange { # 1 } { 0 } }
39 \newcommand{\ levelmultiup } [2] { \ levelchange {#1 } { #2 } } %t i t l e , uppity

Four commands are defined for easily changing the outline level. These are pure convineance,
as you could also use \levelchange directly with the appropriate parameters.

11

9 Licence

coseoul.tex & coseoul.pdf
Copyright 2011 M. Teubner

This work may be distributed and/or modified under the conditions of the LaTeX Project
Public License, either version 1.3 of this license or (at your option) any later version. The
latest version of this license is in http://www.latex-project.org/lppl.txt and
version 1.3 or later is part of all distributions of LaTeX version 2005/12/01 or later.

This work has the LPPL maintenance status ‘maintained’.

The Current Maintainer of this work is M. Teubner.

This work consists of the files coseoul.sty, coseoul.tex, cosexamp.tex and the derived files
coseoul.pdf and cosexamp.pdf.

12

http://www.latex-project.org/lppl.txt

	Introduction
	Working principle
	Use cases
	Collaborative work
	Writing a thesis
	Editing a compilation

	Package options
	Current level

	Limitations
	Min and max levels
	Initial level
	Structure warnings
	Change levels

	Developement history
	Inspiration
	First attempt
	Current Version
	Future Developement

	Acknowledgements
	The custom TOC
	The name coseoul
	This document

	Code
	Complete Code
	Commented Code

	Licence

