
constants.sty,
a package for automatic numbering

of constants ∗

Antoine Lejay

Released 2008/03/25

Abstract

This set of macros aims to provide a way to number automatically con-
stants in a mathematical proof with a system for labelling/referencing. In
addition, several families of constants (with different symbols) may be de-
fined.

Contents
1 Introduction 1

2 Basic usage 2

3 Family of constants 2
3.1 Defining a family 2
3.2 Using a family 3

4 The code 3

4.1 Initialization 4
4.2 Macros associated to constants . 4
4.3 Macros for testing existence of

families 4
4.4 The family of constants normal . 4
4.5 Definition of families 4
4.6 Reading constants informations . 5
4.7 Calling constants 6
4.8 Writing informations in the aux

file 7
4.9 Reseting constants 8

1 Introduction
Some domains of mathematics such as the theory of (partial) differential equations
heavily rely on inequalities, and many proofs are done by writing down a long
sequence of inequalities involving constants that may change from line to line.
Thus, a standard redaction trick consists in starting a proof by the statement

Let C denotes a constants that varies from line to line.

However, it is sometimes necessary to get more informations about the involved
constants. Thus, either one has to finds different symbols, to the risk of introduce
some confusions in the notations, or to labels the constants. Of course, manual
labelling is not that easy, especially at the early stages of redaction.

The aim of this package is then to provide an automatic way to incrementally
label the constants with numbers. In addition, it offers the possibility to label the
constants with a mechanism similar to \label and \ref. Finally, it is possible to
define several families of constants with different rules for printing.

∗This file describes version v.1, last revised 2008/03/25.

1

Dependencies: this package uses the keyval package of the graphic bundle
(which is in every standard distribution).

2 Basic usage
The most basic usage of this package consists in calling the macro \C in math\C

mode, that prints C1 for the first time, C2 for the second time, ...
The macro \Cl is similar to \C except that it takes a mandatory argument\Cl

which is a label’s name, for example \Cl{cst-1}. The number of the con-
stant which is then printed is recorded and written in the .aux file. Note that
\label{cst-1} does not interact with and \Cl{cst-1}, that is the labels for con-
stants are treated in a specific way and can be only accessed through the command
\Cr below.

The macro \Cr takes a mandatory argument which shall be the name of a label\Cr

defined by \Cl. As for standard labels in LATEX, if \Cr calls a label that have not
yet been defined are, then the result is replaced by “Cst??”. A message is written
at the end of the compilation to indicate the need of a second compilation to get
all the references right.

This macros takes the label of a constant as a mandatory argument and returns\pagerefconstant

the page were the constant is.
This macros resets the counter of constants, so that the next call to \C will\resetconstant

print again C1.

3 Family of constants
What if one whishes to use two families of constants K(1), K(2), ... and C1, C2,
... in the same document, and that the K(i)’s are reseted at each new section? A
possibility consists then in defining a new family of constant using the following
code in the preamble.

\newcommand{\parenthezises}[1]{(\arabic{#1})}

\newconstantfamily{example1}{

symbol=K,

format=\parenthezises,

reset={section}

}

3.1 Defining a family
The macro \newconstantfamily allows one to define a new family of constants.\newconstantfamily

Its first argument is the name of the family, while the second argument uses the
key-value principle.

The key symbol is for the symbol that is used. The key format shall takes as
argument a command with one argument that can be applied to a counter (such as
\alph, \roman, ...), or any user-defined command such a \parenthezises above.
The key reset takes the name of a counter and thus the counter for this family of
constants is reseted each time the corresponding counter is stepped by one. Note
that several reset key may be used (technically, it adds the name of the counter

2

to a list of counters to be reseted each time a given counter is stepped). Here,
possible names are section, subsection, equation, ...

By default, there is one family which is defined, whose name is normal.
If a key is missing, then the corresponding standard values are used (that is

symbol=C, format=\arabic and no reset key).
If \newconstantfamily is called upon a family name that has been al-\renewconstantfamily

ready defined, then the compilers stops and returns an error message. The
\renewconstantfamily (still to be used in the preamble) allows one to over-
ride the behavior of a family without getting an arror message. Using normal as
a family name, one can get replace the standard behavior of \C.

3.2 Using a family
Using a family is simple: it is sufficient to call \C and \Cl with an optional\C

\Cl

\Cr

\pagerefconstant

argument which is the family name (if the name is incorrect, an error message is
printed), that is \C[example1] and \Cl[example1]{cst-2} to get K(3) and K(4).
For \Cr, there is no need to call the family, as it is stored with the family name.
Thus, \Cr{cst-2} will print K(4). The macro \pagerefconstant also do not
need any reference to a family name.

The command \resetconstant also accepts the family name as an optional\resetconstant

argument.

4 The code
The mechanism of labelling constants is similar to the mechanism used by the stan-
dard LATEX \label and \ref mechanism (see the files source2e.pdf, latex.ltx
and ltxref.dtx), excepted that the family of the constant is taken into account.

This works the following way:

1. The aux file is read first. If a line of type

\newlabelconstant{⟨label⟩}{{⟨number⟩}{⟨page⟩}{⟨family⟩}}

is found, then a new macro \cstr@⟨label⟩ is created. This macro shall
expand into

{{⟨number⟩}{⟨page⟩}{⟨family⟩}}

where ⟨number⟩ is the number of the constant, ⟨page⟩ is the page were it
appears and ⟨family⟩ is its family name.

2. When a reference ⟨label⟩ to a constant is found (call of \Cr{⟨label⟩}), then
TEX determines if \cstr@⟨label⟩ is already defined. If not, then it prints a
symbol for unknown constants and send a warning message.

3. When a label to a constant is defined (call of \Cr[\family]{⟨label⟩}), then
TEX writes into the aux file the corresponding \newlabelconstant line.

4. At the end of the document, the aux file is read once to determined wether
or not there the source file has to be compiled or not.

3

4.1 Initialization
The initializaton call the package keyval.

1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesPackage{constants}%

3 [2008/03/25 v.1 Labeling and numbering constants]

4 \PackageInfo{constants}

5 {This package aims to label et number constants in a mathematical proof.}

6 \RequirePackage{keyval}

4.2 Macros associated to constants
When a family ⟨family⟩ of constants is defined, several macros are created, that are
\cst@family@⟨family⟩, to check the existence of a family, \cst@format@⟨family⟩,
that takes a counter name as argument, and \cst@symbol@⟨family⟩, that expand
into the symbol of the constant. In addition, a counter cst@counter@⟨family⟩ is
created.

4.3 Macros for testing existence of families
When a new family ⟨family⟩ is defined, a macro \cst@family@⟨family⟩ is defined,\@if@constant@exists

that expands to nothing.

7 \def\@if@constant@exists#1#2#3{\@ifundefined{cst@family@#1}{#3}{#2}}

4.4 The family of constants normal

The normal family is the family by default. The corresponding macros are then
defined.

8 \global\@namedef{cst@family@normal}{}

9 \newcounter{cst@counter@normal}

10 \def\cst@format@normal#1{\arabic{#1}}

11 \def\cst@symbol@normal{C}

4.5 Definition of families
The macro \newconstantfamily defines the macros and counter associated to a\newconstantfamily

family.
12 \newcommand{\newconstantfamily}[2]{

13 \@if@constant@exists{#1}{%

14 \PackageError{constants}{The family of constants ’#1’ already exists}{%

15 Use \protect\renewconstantfamily\space to override}}%

16 {%

17 \expandafter\def\csname cst@family@#1\endcsname{}

18 \expandafter\def\csname cst@format@#1\endcsname{\cst@format@normal}

19 \expandafter\def\csname cst@symbol@#1\endcsname{\cst@symbol@normal}

20 \expandafter\newcounter{cst@counter@#1}

21 \define@key{constants}{format}%

22 {\expandafter\def\csname cst@format@#1\endcsname{##1}}

23 \define@key{constants}{symbol}%

24 {\expandafter\def\csname cst@symbol@#1\endcsname{##1}}

25 \define@key{constants}{reset}{\@addtoreset{cst@counter@#1}{##1}}

4

26 \setkeys{constants}{#2}

27 }}

The \renewconstantfamily also redefines the macros associated to constants,\renewconstantfamily

but does not re-create the counter.

28 \newcommand{\renewconstantfamily}[2]{

29 \@if@constant@exists{#1}{

30 \define@key{constants}{format}{%

31 \expandafter\def\csname cst@format@#1\endcsname{##1}}

32 \define@key{constants}{symbol}{%

33 \expandafter\def\csname cst@symbol@#1\endcsname{##1}}

34 \define@key{constants}{reset}{\@addtoreset{cst@counter@#1}{##1}}

35 \setkeys{constants}{#2}

36 }{%

37 \PackageError{constants}{The family of constants ’#1’ already exists}{%

38 Use \protect\renewconstantfamily\space to override}}%

39 }

The macros \newconstantfamily and \renewconstantfamily can only be
called in the preamble.

40 \@onlypreamble\newconstantfamily

41 \@onlypreamble\renewconstantfamily

4.6 Reading constants informations
The following macros aims to read the informations from the macro \cstr@⟨label⟩
(See Section 4).

When constants informations are read from the aux file, the format, de-
duced from the family name ⟨family⟩, is put in \cst@tmp@format and the
symbol is put in \cst@tmp@symbol. By default, these macros expand into
\cst@undefined@format and \cst@undefined@symbol.
42 \def\G@refundefinedconstanttrue{%

43 \gdef\@refundefinedconstant{%

44 \@latex@warning@no@line{%

45 There were undefined references to constants}}}

46 \let\@refundefinedconstant\relax

47 \def\cst@tmp@format{cst@undefined@format}

48 \def\cst@tmp@symbol{cst@undefined@symbol}

These macros return respectively their first, second and third argument.\@firstofthree

\@secondofthree

\@thirdofthree

49 \long\def\@firstofthree#1#2#3{#1}

50 \long\def\@secondofthree#1#2#3{#2}

51 \long\def\@thirdofthree#1#2#3{#3}

If a reference to a macro is not defined, then the counter value is not expanded,
while a symbol “Cst??” is returned.
52 \def\cst@undefined@format#1{}

53 \def\cst@undefined@symbol{%

54 \nfss@text{\reset@font\textrm{Cst\textbf{??}}}}

This macro expands into one of the arguments of the constant. The argument\@setrefconstant

#1 shall be of type cstr@⟨label⟩, the argument #2 shall then be \@firstofthree,
\@secondofthree and \@thirdofthree. The third argument #3 expands into

5

{{⟨number⟩}{⟨page⟩}{⟨family⟩}}. If cstr@⟨label⟩ is not defined, then the package
send a warning and the macro expands to “??”.
55 \def\@setrefconstant#1#2#3{%

56 \ifx#1\relax

57 \protect\G@refundefinedconstanttrue

58 \nfss@text{\reset@font\bfseries ??}%

59 \@latex@warning{Reference to constant ‘#3’ on page \thepage \space

60 undefined}%

61 \else

62 \expandafter#2#1\null

63 \fi}

This macro is similar to \@setrefconstant but initializes \cst@tmp@format\@setfamconstant

and \cst@tmp@symbol to \cst@format@⟨family⟩ and \cst@fsymbol@⟨family⟩.
64 \def\@setfamconstant#1#2#3{%

65 \ifx#1\relax%

66 \def\cst@tmp@format{cst@undefined@format}\null

67 \def\cst@tmp@symbol{cst@undefined@symbol}\null

68 \else%

69 \def\cst@tmp@format{cst@format@\expandafter#2#1}\null

70 \def\cst@tmp@symbol{cst@symbol@\expandafter#2#1}\null

71 \fi}

This macro is similar to \@setrefconstant but set the temporary counter\@setcounterconstant

cst@tmp@counter to the value of ⟨number⟩.
72 \newcounter{cst@tmp@counter}

73 \def\@setcounterconstant#1#2#3{%

74 \ifx#1\relax

75 \protect\G@refundefinedconstanttrue

76 \@latex@warning{Reference to constant ‘#3’ on page \thepage \space

77 undefined}%

78 \else

79 \setcounter{cst@tmp@counter}{\expandafter#2#1}\null

80 \fi}

These macros are used to call \@setrefconstant, \@setfamconstant and\refconstant

\familyconstant

\counterconstant

\@setcounterconstant.
81 \def\refconstant#1{%

82 \expandafter\@setrefconstant\csname cstr@#1\endcsname\@firstofthree{#1}}

83 \def\familyconstant#1{%

84 \expandafter\@setfamconstant\csname cstr@#1\endcsname\@thirdofthree{#1}}

85 \def\counterconstant#1{%

86 \expandafter\@setcounterconstant%

87 \csname cstr@#1\endcsname\@firstofthree{#1}}

4.7 Calling constants
The macro is used to call a referenced constant. Using \counterconstant and\Cr

\familyconstant, the macros \cst@tmp@symbols, \cst@tmp@format and the
counter cst@tmp@counter have been properly initialized.
88 \newcommand{\Cr}[1]{%

89 \counterconstant{#1}%

90 \familyconstant{#1}%

91 {\@nameuse{\cst@tmp@symbol}}_{\@nameuse{\cst@tmp@format}{cst@tmp@counter}}}

6

This macro checks the existence of a family of constants and then expand to\C

the symbol with the value of the counter.
92 \newcommand{\C}[1][normal]{%

93 \@if@constant@exists{#1}{%

94 \expandafter\refstepcounterconstant{cst@counter@#1}%

95 {\@nameuse{cst@symbol@#1}}_{\@nameuse{cst@format@#1}{cst@counter@#1}}}%

96 {\PackageError{constants}{Family for constants ’#1’ not defined}{

97 Check the name or use \protect\newconstantfamily}}%

98 }

This macro calls \C and then call \labelconstant to add the constant label into\Cl

the aux file.
99 \newcommand{\Cl}[2][normal]{\C[#1]\labelconstant{#2}{\string #1}}

This macro is similar to refconstant but returns the page number.\pagerefconstant

100 \def\pagerefconstant#1{%

101 \expandafter\@setrefconstant\csname cstr@#1\endcsname

102 \@secondofthree{#1}}

This macro is used to increment the number of the constants.\refstepcouterconstant

103 \def\refstepcounterconstant#1{\stepcounter{#1}%

104 \protected@edef\@currentlabelconstant

105 {\csname p@#1\endcsname\csname the#1\endcsname}%

106 }

4.8 Writing informations in the aux file
This macro checks the existence of #1@#2 (here cstr is passed as argument #1\@newl@belconstant

and ⟨label⟩ is passed as argument #2). If #1@#2 has already been defined, then it
claims that the label already exists. then it creates this macros that expands into
#3, which shall then expand into

{{⟨number⟩}{⟨page⟩}{⟨family⟩}}

This macro is called by \newlabelconstant and is executed only when reading
the aux file at the beginning of the page processing. In addition, it can only be
called in the preamble.

107 \def\@newl@belconstant#1#2#3{{%

108 \@ifundefined{#1@#2}%

109 \relax

110 {\gdef \@multiplelabelsconstant {%

111 \@latex@warning@no@line{%

112 There were multiply-defined labels for constants}}%

113 \@latex@warning@no@line{Label for constant ‘#2’ multiply defined}}%

114 \global\@namedef{#1@#2}{#3}

115 }}

116 \def\@currentlabelconstant{}

117 \def\newlabelconstant{\@newl@belconstant{cstr}}

118 \@onlypreamble\@newl@belconstant

119 \let \@multiplelabelsconstant \relax

This macro is called when a new label is created and writes the corresponding\labelconstant

informations into the aux file.
120 \def\labelconstant#1#2{\@bsphack

121 \protected@write\@auxout{}%

7

122 {\string\newlabelconstant{#1}{{\@currentlabelconstant}{\thepage}{#2}}}%

123 \@esphack}

The following codes corresponds to the final check to determine if a supple-
mentary compilation is needed.

124 \AtEndDocument{

125 \clearpage

126 \let\@newl@belconstant\@empty

127 \begingroup

128 \if@filesw

129 \immediate\closeout\@mainaux

130 \let\@setckpt\@gobbletwo

131 \let\@newl@belconstant\@testdef

132 \let\@newl@bel\@testdef

133 \@tempswafalse

134 \makeatletter \input\jobname.aux

135 \fi

136 \@refundefinedconstant

137 \if@filesw

138 \ifx \@multiplelabelsconstant \relax

139 \if@tempswa

140 \@latex@warning@no@line{%

141 Label(s) for constants may have changed.

142 Rerun to get cross-references right}%

143 \fi

144 \else

145 \@multiplelabelsconstant

146 \fi

147 \fi

148 \endgroup

149 \deadcycles\z@\@@end

150 }

4.9 Reseting constants
The macro \resetconstant set the counter cst@counter@⟨family⟩ to 0.\resetconstant

151 \newcommand{\resetconstant}[1][normal]{%

152 \@if@constant@exists{#1}{%

153 \setcounter{cst@counter@#1}{0}}{%

154 {\PackageError{constants}{Family for constants ’#1’ not defined}{%

155 Check the name or use \protect\newconstantfamily}}%

156 }}

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@addtoreset 25, 32

\@currentlabelconstant

. . . . 101, 113, 119

\@firstofthree 47, 80, 85

\@if@constant@exists

. 7, 13, 29, 91, 149

\@multiplelabelsconstant

. 107, 116, 135, 142

8

\@newl@bel 129
\@newl@belconstant .

. 104,
114, 115, 123, 128

\@onlypreamble
. 38, 39, 115

\@refundefinedconstant

. 41, 44, 133
\@secondofthree . 48, 99
\@setckpt 127
\@setcounterconstant

. 71, 84
\@setfamconstant 62, 82
\@setrefconstant . .

. 53, 80, 98
\@tempswafalse 130
\@thirdofthree . . 49, 82

A
\arabic 10

C
\C 90, 97
\Cl 97

\counterconstant 83, 87
\Cr 86
\cst@format@normal .

. 10, 18
\cst@symbol@normal .

. 11, 19
\cst@tmp@format . . .

. . . . 45, 64, 67, 89
\cst@tmp@symbol . . .

. . . . 46, 65, 68, 89
\cst@undefined@format

. 50
\cst@undefined@symbol

. 51

D
\define@key

. 21, 23, 25, 30–32

F
\familyconstant . 81, 88

G
\G@refundefinedconstanttrue

. 40, 55, 73

L
\labelconstant . 97, 117

N
\newconstantfamily .

. . . 12, 38, 95, 152
\newlabelconstant .

. 114, 119

P
\pagerefconstant . . 98

R
\refconstant 79
\refstepcounterconstant

. 92, 100
\renewconstantfamily

. . . . 15, 28, 36, 39
\resetconstant 148

S
\setkeys 26, 33

9

	Introduction
	Basic usage
	Family of constants
	Defining a family
	Using a family

	The code
	Initialization
	Macros associated to constants
	Macros for testing existence of families
	The family of constants normal
	Definition of families
	Reading constants informations
	Calling constants
	Writing informations in the aux file
	Reseting constants

