
The cals package∗

Oleg Parashchenko
olpa@uucode.com

November 23, 2016

1 Introduction

The cals package is a set of macros to typeset multipage tables with repeatable
headers and footers, with cells spanned over rows and columns. Decorations are
supported: padding, background color, width of separation rules. The code is
compatible with multicols and bidi.

The work is released to public (LATEX license) by bitplant.de GmbH, a com-
pany which provides technical documentation services to industry.

2 Usage

The users’ guide is a separate document, published in TUGboat 2011:2: http:

//tug.org/TUGboat/tb32-2/tb101parashchenko.pdf. There are examples on
CTAN: https://www.ctan.org/pkg/cals.

The most important feature: the table (its rows) must start in a vertical mode,
the cells content should switch to a horizontal mode. For using the commands with
the @ symbol you might need to say \makeatletter first.

Please post questions and suggestions to the texhax mailing list (http://tug.
org/mailman/listinfo/texhax) or on TEX-LATEX Stack Exchange site (http:
//tex.stackexchange.com/) with the tag cals.

Summary of the user interface:

\begin{calstable} % [n|l|c|r]

\colwidths{{100pt}{200pt}}

\brow \cell{a} \cell{b} \erow

\end{calstable}

Table elements: \thead, \tfoot, \tbreak{\penalty-10000}, \lastrule.
Table alignment: l, c, r for left, center and right; n for none, using the default

\leftskip and \rightskip.

∗This document corresponds to cals CALS, dated 2016/11/23.

1

bitplant.de
http://tug.org/TUGboat/tb32-2/tb101parashchenko.pdf
http://tug.org/TUGboat/tb32-2/tb101parashchenko.pdf
https://www.ctan.org/pkg/cals
http://tug.org/mailman/listinfo/texhax
http://tug.org/mailman/listinfo/texhax
http://tex.stackexchange.com/
http://tex.stackexchange.com/

In-cell alignment: \alignL, \alignC, \alignR, \vfill.
Padding: lengths \cals@paddingL (...T,R,B), set by \cals@setpadding{Ag},

baseline alignment \cals@paddingD, set by \cals@setcellprevdepth{Al}.
Color: \cals@bgcolor.
Rules: \cals@cs@width, \cals@framecs@width, \cals@rs@width, \cals@framers@width,

\cals@bodyrs@width. Overrides: \cals@borderL (...T,R,B).
Hooks: \cals@AtBeginTable, \cals@AtEndTable, \cals@AtBeginCell, \cals@AtEndCell.
Spanning: \nullcell, \spancontent.

3 Implementation

What happens. \cell creates a table cell, puts it to the current row and updates
decorations. At the end of the row (\erow) we have the box \cals@current@row,
the box \cals@current@cs—column separation and cells background—and the
macros \cals@current@rs@above and \cals@current@rs@below—all the re-
quired data to typeset row separation. Before dispatching the row, all the cells
are repacked to the common height. The row dispatcher (\cals@row@dispatch)
usually just uses \cals@issue@row, which outputs current@cs, then joins the
previous row cs@below with the current row rs@above and typesets the result-
ing row separation, and finally prints the row itself. If a table break is required,
the dispatcher backups the current row and first typesets the table footer, a page
break and the table header. In case of a row span, the set of the rows is converted
to one big row.

I tried to code as good and robust as I can. In particular, the package contains
unit tests. However, being an unexperienced TEX programmer, I could write bad
code, especially in the section “List list of tokens”. Do not hesitate to send me
suggestions and corrections, also in the use of English.

The description is split on two parts: main functionality and decorations. The
first part is bottom-up: creating cells, collecting cells to a row, dispatching a
row, top-level table elements. The second part starts with the common code,
then explains in-row decorations (column separation and cells background) and
between-row decorations (row separation).

3.1 Creating cells

\cals@cell

\cals@cell@end

Creates an individual cell before socialization into a table. Content of the cell is
typeset inside a group. Execution continues in \cals@celll@end. Parameters:

1. Width of the cell

2. Vertical correction: when we have a rowspan, the cell is created while pro-
cessing the last row. The vertical correction is required to raise the text back
to the first row of the rowspan.

3. (Implicit parameter.) Content. It is important that it contains a switch
to the horizontal mode, otherwise horizontal dimensions of the cell will be
incorrect.

2

Using an implicit parameter instead of putting it to a macro parameter is probably
a premature optimization.

1 \newcommand\cals@cell[3]{}

2 \def\cals@cell#1#2{%

Start immediately with \vbox to allow \setbox0=\cals@cell{...} construc-
tion. Later, white integrating the cell into a row, the content will be unvboxed
and put to a vbox of the row height.

3 \vbox\bgroup%

Implicitely sets the width and the horizontal paddings of the cell. These set-
tings come into effect on switch from the restricted vertical mode (our \vbox) to
the horizontal mode. Therefore, the content must force such switch, otherwise the
code fails.

4 \hsize=#1

5 \linewidth=#1

6 \leftskip=\cals@paddingL %

7 \rightskip=\cals@paddingR %

Vertical correction and top padding

8 \ifdim #2>0pt %

9 \vskip-#2

10 \fi

11 \vskip\cals@paddingT %

Tuning the top padding. First, compensate the \parskip, which appears on
the mode switch. Second, adjusts baselineskip, so in the case of the right prelim-
inimary setup, the top of the letters ”Al” touches the padding border. Meanwhile,
setting prevdepth aligns the baselines of the first text lines of the row cells.

12 \vskip-\parskip %

13 \prevdepth=\cals@paddingD %

Finally, the content. And the switch to the horizontal mode (we hope).
We want more work afrer typesetting the content, but it is not desirable to

collect all the tokens. Instead, start a group and use \aftergroup to finish type-
setting. For more explanations, see “TEX by Topic”, Chapter 12 “Expansion”.

14 \bgroup\aftergroup\cals@cell@end

15 \cals@AtBeginCell\let\next=% eat ’{’ of the content

16 }%{Implicit content}

17

The infinite glue before the bottom padding is useful later, when we will re-
height the cells in a row.

18 \def\cals@cell@end{\vfil\vskip\cals@paddingB

19 \cals@AtEndCell\egroup % finish vbox

Call the caller

20 \cals@celll@end}

3

\cell Creates a cell and appends it to the hbox \cals@current@row.

21 \newcommand\cell[1]{}

22 \def\cell{%

Get the width of the cell and typeset it to the box 0. The execution flow is: \cell
to \cals@cell to \cals@cell@end to \cals@celll@end.

23 \llt@rot\cals@colwidths

24 \let\cals@cell@width=\llt@car

25 \setbox0=\cals@cell\cals@cell@width{0pt}%

26 }

\cals@AtBeginCell

\cals@AtEndCell

Additional code to be executed at the begin and at the end of a cell. An use case
is a hook for pdfsync: \def\cals@AtBeginCell{\pdfsyncstart}. I am not sure
if the end-hook is useful because all the changes are local for the cell group, but
decided to retain it for symmetry.

27 \let\cals@AtBeginCell=\relax

28 \let\cals@AtEndCell=\relax

\cals@width@cell@put@row Implicit setting of the cell width can fail (example is an empty cell). In this case,
force the width explicitely. Then put the cell to the current row. This code should
be a part of \cals@celll@end, but due to \spancontent is in a separate macro.

29 \newcommand\cals@width@cell@put@row{%

30 \ifdim \cals@cell@width=\wd0 \relax \else \wd0=\cals@cell@width \fi

31 \setbox\cals@current@row=\hbox{\unhbox\cals@current@row\box0 }}%

\cals@celll@end After a cell is typeset to the box 0, execution continues here (see notes to \cell).
Update the current row and its decorations.

32 \newcommand\cals@celll@end{%

33 \cals@width@cell@put@row

34 \cals@decor@next\cals@cell@width}

\spancontent Typesets a spanned cell (the content is in the implicit argument) and puts it to
the current row. The width and height correction are already calculated, the
decorations are also already added.

35 \newcommand\spancontent[1]{}

36 \def\spancontent{%

37 \let\cals@tmp=\cals@celll@end

38 \let\cals@cell@width=\cals@span@width

39 \def\cals@celll@end{%

40 \cals@width@cell@put@row%

41 \let\cals@celll@end=\cals@tmp}%

42 \setbox0=\cals@cell{\cals@span@width}{\cals@span@height}%

43 }%{Implicit content}

3.1.1 Cell padding

\cals@setpadding

\cals@paddingL

\cals@paddingR

\cals@paddingT

\cals@paddingB

Calculates and sets the cell padding. It seems that a good value is the half of the
font size, calculated as the full height of a box with the content #1. The calstable
environment uses the letters “Ag”.

4

44 \newskip\cals@paddingL

45 \newskip\cals@paddingR

46 \newskip\cals@paddingT

47 \newskip\cals@paddingB

48

49 \newcommand{\cals@setpadding}[1]{%

50 \setbox0=\hbox{#1}%

51 \dimen0=\ht0 \advance\dimen0 by \dp0 \divide\dimen0 by 2

52 \cals@paddingL=\dimen0 \relax

53 \cals@paddingR=\cals@paddingL

54 \cals@paddingT=\cals@paddingL

55 \cals@paddingB=\cals@paddingL

56 }

\cals@setcellprevdepth

\cals@paddingD

The function \cals@cell uses the length \cals@paddingD to tune the top
padding. The macro \cals@setcellprevdepth calculates and sets this parame-
ter, so that a box with the content #1 touches the padding border. The calstable
environment uses the letters “Al”.

57 \newdimen\cals@paddingD

58

59 \newcommand{\cals@setcellprevdepth}[1]{%

60 \setbox0=\vbox{\prevdepth=0pt #1}%

61 \setbox1=\vbox{#1}%

62 \dimen0=\ht0 \advance\dimen0 by \dp0 %

63 \advance\dimen0 by -\ht1 \advance\dimen0 by -\dp1%

64 \cals@paddingD=\dimen0 }

\alignL

\alignC

\alignR

To align the table cell text left, center or right we add or remove vfill-part of the
left and right padding. Executed by assigning skip to dimen.

65 \newcommand\alignL{%

66 \cals@vfillDrop\cals@paddingL

67 \cals@vfillDrop\cals@paddingR}

68

69 \newcommand\alignC{%

70 \cals@vfillAdd\cals@paddingL

71 \cals@vfillAdd\cals@paddingR}

72

73 \newcommand\alignR{%

74 \cals@vfillAdd\cals@paddingL

75 \cals@vfillDrop\cals@paddingR}

\cals@vfillAdd

\cals@vfillDrop

Add or remove the vfill-part of a skip. Retain the existing value if possible.

76 \newcommand\cals@vfillAdd[1]{\ifnum\gluestretchorder#1>1\relax\else

77 \dimen0=#1\relax #1=\dimen0 plus 1fill\relax \fi}

78 \newcommand\cals@vfillDrop[1]{\ifnum\gluestretchorder#1>0\relax

79 \dimen0=#1\relax #1=\dimen0\relax \fi}

5

3.2 From cells to a row

\cals@current@row Rows are first typeset to this hbox.

80 \newbox\cals@current@row

\colwidths

\cals@colwidths

The macro \cals@colwidths contains a list of column widths. The user sets it
through the API macro \colwidths, which performs expansion. The list is alive,
it is rotated after a cell is finished, so the width of the next cell is always the first
element.

81 \newcommand\colwidths[1]{}

82 \def\colwidths#{\edef\cals@colwidths}

83 \def\cals@colwidths{{100pt}}

Initially, I planned to use \row{...} to create a row. In order to perform
actions at the end of the row I used the aftergroup-trick, like for \cell command.
Unfortunately, the decorations were lost after the group finished. I tried to save
them to global temporary macros at the end of each cell, but the saving list was
big. Finally, I decided that the construction \brow...\erow is much easier to
implement.

\brow Starts a row. Resets the rowspan markers, \cals@current@row and decorations.

84 \newcommand\brow{%

85 \cals@updateRspanMarkers

86 \setbox\cals@current@row=\hbox{}%

87 \cals@decor@begin}

\erow Finishes a row. All the cells are re-layouted to the row height. Decorations are
finalized, and the row is dispatched.

88 \newcommand\erow{%

89 \cals@reheight@cells\cals@current@row

90 \cals@last@row@height=\ht\cals@current@row\relax

91 \cals@decor@end\cals@lastWidth

92 \ht\cals@current@cs=\ht\cals@current@row

93 \cals@row@dispatch

94 }

\cals@reheight@cells Re-heights all the boxes of a row. Retains the widths of these boxes.

95 \newcommand\cals@reheight@cells[1]{%

96 \dimen0=\ht#1\relax

97 \setbox2=\hbox{}%

98 \def\next{%

99 \setbox4=\lastbox

100 \ifvoid4

101 \def\next{\global\setbox2=\box2}%

102 \else

103 \dimen4=\wd4

104 \setbox4=\vbox to \dimen0{\unvbox4}%

105 \ifdim \dimen4=\wd4 \relax \else \wd4=\dimen4 \fi

106 \setbox2=\hbox{\box4\unhbox2 }%

6

107 \fi

108 \next}%

109 \setbox0=\hbox{\unhbox#1\next}%

110 \setbox#1=\box2 }

3.3 Spanned cells

The technical approach:

• Spanning is started in the left top corner using the command \nullcell{lt...}

• The spanned cell is split on the table cells using the command \nullcell.
These nullcells are responsible for correct decorations and for calculating the
big cell dimensions.

• The content of the spanned cells comes in the end, in the right bottom
corner.

It is possible to have several active spans at once, therefore we have to remem-
ber them. I use a queue. Each time a left column of a span is started, we take
span data from the queue. After the right column of the span, we put the data
back to the queue, to the end. Probably it is not obvious at the first look (at least,
I needed time to find this simple idea) that this rotating queue is always right:
when spanning (its left column) starts again, the beginning of the queue always
contains data for exactly this spanning.

\cals@spanq@heights The queue for height tracking. In the first version I also had a queue for deco-
rations, but later cancelled it. I use \def instead of \newcommand in order that
\show prints ”macro” instead of ”\long macro”. The latter breaks unit tests.

111 \def\cals@spanq@heights{}

\cals@span@get Gets \cals@span@height from the queue.

112 \newcommand\cals@span@get{%

113 \llt@decons\cals@spanq@heights \cals@span@height=\llt@car\relax}

\cals@span@put Puts \cals@span@height to the queue.

114 \newcommand\cals@span@put{%

115 \edef\cals@tmp{\the\cals@span@height}\llt@snoc\cals@spanq@heights\cals@tmp}

\nullcell The big spanned cell is split on the table cells, which are identified by \nullcells.
The task is to produce correct decorations and to track the parameters of the
spanned cell.

• Decorations: if defined, the background color is always added to the column
separation row.

• Decorations: the borders are set to 0pt (disabled), except for the borders
which are requested by the parameter of \nullcell: l for the left border,
t for the top, r for the right, b for the bottom.

7

• More precisely, the letters in the argument are not to specify which decora-
tions to use, but to specify the location of the small cell in the big cell. The
use for decorations is just an useful side-effect.

• Action l: take the span data from the queue.

• Action r: update the height of the current span, put the data to the queue.

• Action b: do not put an empty box to the current row. Instead, accumulate
the width of the current span. (Preparation for \spancontent.)

116 \newcommand\nullcell[1]{%

First of all, parse the argument and set the if-commands \cals@span@ifX. Then
get the width of the cell.

117 \let\cals@span@ifL=\cals@iffalse

118 \let\cals@span@ifT=\cals@iffalse

119 \let\cals@span@ifR=\cals@iffalse

120 \let\cals@span@ifB=\cals@iffalse

121 \def\next##1{\ifx\relax##1\let\next=\relax \else

122 \expandafter\let\csname cals@span@if##1\endcsname=\cals@iftrue \fi

123 \next}%

124 \uppercase{\next #1}\relax

125 \llt@rot\cals@colwidths \let\cals@nullcell@width=\llt@car

Action ”l”: update the height, supress the borders, set the rowspan markers.

126 \cals@span@ifL\iftrue

127 \cals@span@ifT\iftrue

128 \cals@span@height=0pt %

129 \else

130 \cals@span@get

131 \advance\cals@span@height by \cals@last@row@height\relax

132 \fi

133 \cals@span@ifB\iftrue \else

134 \let\cals@ifInRspan=\cals@iftrue

135 \let\cals@ifLastRspanRow=\cals@iffalse

136 \fi

137 \let\cals@span@borderL=\cals@borderL \let\cals@span@borderT=\cals@borderT

138 \let\cals@span@borderR=\cals@borderR \let\cals@span@borderB=\cals@borderB

139 \fi

Action ”r”: put the data to the queue, unless in the end of the spanning.

140 \cals@span@ifR\iftrue

141 \cals@span@ifB\iftrue \relax \else \cals@span@put \fi

142 \fi

Update the current row or calculate the span width (in the case of the bottom
row).

143 \cals@span@ifB\iftrue

144 \cals@span@ifL\iftrue

145 \cals@span@width=\cals@nullcell@width\relax

146 \else

8

147 \advance\cals@span@width by \cals@nullcell@width\relax

148 \fi

149 \else

150 \setbox\cals@current@row=\hbox{%

151 \unhbox\cals@current@row

152 \vbox{\hbox to\cals@nullcell@width{}\vfil}}%

153 \fi

Update decorations

154 \cals@span@ifL\iftrue \let\cals@borderL=\cals@span@borderL

155 \else \def\cals@borderL{0pt}\fi

156 \cals@span@ifT\iftrue \let\cals@borderT=\cals@span@borderT

157 \else \def\cals@borderT{0pt}\fi

158 \cals@span@ifR\iftrue \let\cals@borderR=\cals@span@borderR

159 \else \def\cals@borderR{0pt}\fi

160 \cals@span@ifB\iftrue \let\cals@borderB=\cals@span@borderB

161 \else \def\cals@borderB{0pt}\fi

162 \cals@decor@next\cals@nullcell@width

163 \let\cals@borderL=\cals@span@borderL \let\cals@borderR=\cals@span@borderR

164 \let\cals@borderT=\cals@span@borderT \let\cals@borderB=\cals@span@borderB

165 }

\cals@span@width

\cals@span@height

The width of the span cell. The height of the spanned cell (without the last row).

166 \newdimen\cals@span@width

167 \newdimen\cals@span@height

\cals@ifInRspan Set to \cals@iftrue if the current row is a part of a row span. Otherwise
\cals@iffalse.

\cals@ifLastRspanRow Set to \cals@iftrue if the current row is the last row of of a row span. Otherwise
\cals@iffalse.

\cals@updateRspanMarkers Resets the span markers, which are later updated by \nullcell to the correct
state for the current row.

168 \newcommand\cals@updateRspanMarkers{%

169 \ifx \empty\cals@spanq@heights

170 \let\cals@ifInRspan=\cals@iffalse

171 \else

172 \let\cals@ifInRspan=\cals@iftrue

173 \fi

174 \let\cals@ifLastRspanRow=\cals@iftrue}

3.4 Row dispatcher

\cals@row@dispatch Depending if the current row has a rowspan cell or not, the execution is different.

175 \newcommand\cals@row@dispatch{%

176 \ifx b\cals@current@context

177 \cals@ifInRspan\iftrue

178 \cals@row@dispatch@span

9

179 \else

180 \cals@row@dispatch@nospan

181 \fi

182 \else

183 \cals@row@dispatch@nospan

184 \fi}

\cals@row@dispatch@nospan After a row is typeset in a box, this macro decides what to do next. Usually, it
should just add decorations and output the row. But if a table break is required,
it should put the current row to backup, typeset the footer, the break, the header
and only then the row from the backup. Summary of main parameters:

• rowsep from the last row (\cals@last@rs) and the last context (\cals@last@context)

• current row (\cals@current@row), its decorations (\cals@current@cs,
\cals@current@rs@above, \cals@current@rs@below) and context (\cals@current@context)

185 \newcommand\cals@row@dispatch@nospan{%

The header and footer rows are always typeset without further considerations.

186 \let\cals@last@context@bak=\cals@last@context

187 \ifx h\cals@current@context \else

188 \ifx f\cals@current@context \else

In the body, if a break is required: do it.

189 \cals@ifbreak\iftrue

190 \setbox\cals@backup@row=\box\cals@current@row

191 \setbox\cals@backup@cs=\box\cals@current@cs

192 \let\cals@backup@rs@above=\cals@current@rs@above

193 \let\cals@backup@rs@below=\cals@current@rs@below

194 \let\cals@backup@context=\cals@current@context

195 \cals@tfoot@tokens

196 \lastrule

197 \cals@issue@break

198 \cals@thead@tokens

199 \setbox\cals@current@row=\box\cals@backup@row

200 \setbox\cals@current@cs=\box\cals@backup@cs

201 \let\cals@current@rs@above=\cals@backup@rs@above

202 \let\cals@current@rs@below=\cals@backup@rs@below

203 \let\cals@current@context=\cals@backup@context

204 \fi\fi\fi

Typeset the row. If the width of the row is more than hsize, then the issue-code
should not fit the row to hsize.

205 \ifdim\wd\cals@current@row>\hsize\relax

206 \def\cals@tohsize{}%

207 \fi

208 \cals@issue@row

Consider a table such that thead+row1 do not fit to a page (see the unit test
regression/test_010_wrongbreak). Without the next code, the following hap-
pens: thead and row1 are typeset, but the output procedure is not executed yet.

10

Therefore, when row2 is ready, we detect that a table break is required and create
it. Then the output procedure moves thead+row1 on the next page. The result:
thead and row1 on one page, row2 and the rest on the next page instead of the
whole table on one page. Solution: force a run of the output procedure after the
first row of a table chunk.

209 \ifx b\cals@last@context

210 {\dimen0=\pagetotal\relax

211 \advance\dimen0 by \cals@tfoot@height\relax

212 \advance\dimen0 by -\pagegoal

213 \ifdim\dimen0>0pt\relax

214 \vskip\dimen0

215 \penalty9999 % with 10000, the output page builder is not called

216 \vskip-\dimen0\relax

217 \fi

218 }%

219 \fi

220 }

\cals@row@dispatch@span The only specific thing to rowspanned rows is that we should not allow breaks
between the rows in one group. We put these rows to one box, and process this
big box as a big row.

221 \newcommand\cals@row@dispatch@span{%

Output the row to the backup box. If the row is the first row in the span, let its
decorations will be the decorations for the future big row. Also, reset the values
of leftskip and rightskip to avoid adding them twice, once in a individual row, and
once to the common span box.

222 \ifvoid\cals@backup@row

223 \setbox\cals@backup@row=\vbox{\box\cals@current@row}%

224 \setbox\cals@backup@cs=\box\cals@current@cs

225 \let\cals@backup@rs@above=\cals@current@rs@above

226 \let\cals@backup@last@rs@below=\cals@last@rs@below

227 \let\cals@backup@context=\cals@last@context

228 \cals@backup@leftskip=\leftskip\relax

229 \cals@backup@rightskip=\rightskip\relax

230 \let\cals@backup@tohsize=\cals@tohsize

231 \leftskip=0pt\relax \rightskip=0pt\relax \def\cals@tohsize{}%

232 \else

233 \setbox\cals@backup@row=\vbox{\unvbox\cals@backup@row

234 \cals@issue@row}%

235 \fi

236 \let\cals@last@rs@below=\cals@current@rs@below

237 \let\cals@last@context=\cals@current@context

If this is the last row of the span, create the fake big row and use the normal
dispatcher.

238 \cals@ifLastRspanRow\iftrue

239 \setbox\cals@current@row=\box\cals@backup@row

240 \setbox\cals@current@cs=\box\cals@backup@cs

11

241 \let\cals@current@rs@above=\cals@backup@rs@above

242 \let\cals@last@rs@below=\cals@backup@last@rs@below

243 \let\cals@last@context=\cals@backup@context

244 \leftskip=\cals@backup@leftskip

245 \rightskip=\cals@backup@rightskip

246 \let\cals@tohsize=\cals@backup@tohsize

247 \cals@row@dispatch@nospan

248 \fi

249 }

\cals@backup@row

\cals@backup@cs

Boxes and skips for backup.

250 \newbox\cals@backup@row

251 \newbox\cals@backup@cs

252 \newskip\cals@backup@leftskip

253 \newskip\cals@backup@rightskip

To decide on table breaks and row separation decorations, we need to trace
context.

\cals@current@context The context of the current row. Possible values, set as a ”\let” to a character:

• n: no context, should not happen when the value is required

• h: table header

• f: table footer

• b: table body

\cals@last@context The context of the previous row. Possible values, set as a ”\let” to a character:

• n: there is no previous row (not only the start of a table, but also the start
of a table chunk)

• h, f, b: table header, footer, body

• r: a last rule of the table (or its chunk) is just output. This status is used
to allow multiple calls to \lastrule. Probably the use of current instead
of last is more logical, but using last is more safe. Who knows if an user
decides to use \lastrule somewhere in a middle of a table.

\cals@ifbreak Table breaks can be manual or automatic. The first is easy, the second is near to
impossible if we take into account table headers and footer. The following heuristic
seems good.

Check if the current row plus the footer fits to the rest of the page. If not, a
break is required. This approach is based on two assumptions:

• the height of the footer is always the same, and

• any body row is larger than the footer.

12

More precise and technical description: \cals@ifbreak decides if an au-
tomatic table break is required and leaves the macro \cals@iftrue (yes) or
\cals@iffalse (no) in the input stream. If the user sets \cals@tbreak@tokens
(using \tbreak), break is forced. Otherwise, no break is allowed:

• inside a box (= inside a float)

• In the header

• In the footer

• Immediately after the header

• At the beginning of a chunk of a table.

Otherwise break is recommended when the sum of the height of the current row
and of the footer part is greater as the rest height of the page. The implicit first
parameter is used for if-fi balancing, see \cals@iftrue.

254 \newcommand\cals@ifbreak[1]{}

255 \def\cals@ifbreak{%

256 \let\cals@tmp=\cals@iffalse

257 \let\cals@tmpII=\cals@iftrue

258 \ifx\relax\cals@tbreak@tokens

259 \ifinner\else

260 \ifx h\cals@current@context \else

261 \ifx f\cals@current@context \else

262 \ifx h\cals@last@context \else

263 \ifx n\cals@last@context \else

264 \dimen0=\pagetotal\relax

265 \advance\dimen0 by \ht\cals@current@row\relax

266 %\showthe\ht\cals@current@row\relax

267 \ifx \cals@tfoot@tokens\relax \else

268 %\show\cals@tfoot@height\relax

269 \advance\dimen0 by \cals@tfoot@height\relax

270 \fi

271 %\showthe\dimen0\relax

272 \ifdim \dimen0>\pagegoal\relax

273 \let\cals@tmp=\cals@tmpII

274 \fi

275 \fi\fi\fi\fi\fi

276 \else \let\cals@tmp=\cals@tmpII % tbreak@tokens

277 \fi

278 \cals@tmp}

\cals@issue@break By default, force a page break, otherwise use user’s tokens set by \tbreak.

279 \newcommand\cals@issue@break{\ifx \relax\cals@tbreak@tokens \penalty-10000 %

280 \else \cals@tbreak@tokens \fi

281 \let\cals@tbreak@tokens=\relax

282 \let\cals@last@context=n}

13

\cals@set@tohsize

\cals@tohsize

Table row contains not only the row itself, but also \leftskip and \rightskip.
Now the dilemma. If the row is just \hbox, than the glue component is ignored, and
the table always aligned left. On the other side, if the row is \hbox to \hsize,
then the user gets underfulled boxes. A simple solution is to switch on and off the
hsize-part depending on the skips.

283 \newcommand\cals@tohsize{}

284 \newcommand\cals@set@tohsize{\def\cals@tohsize{}%

285 \ifnum\gluestretchorder\leftskip>0\relax \def\cals@tohsize{to \hsize}\fi

286 \ifnum\gluestretchorder\rightskip>0\relax \def\cals@tohsize{to \hsize}\fi

287 }

\cals@activate@rtl

\cals@deactivate@rtl

\cals@hbox

For bidi support, use \hboxR instead of \hbox. Actually, more is required for bidi
support, and these macros are retained only as ”legacy”. Otherwise I’d move the
code into the beginning of ‘calstable‘.

288 \newcommand\cals@hbox{}

289 \newcommand\cals@activate@rtl{\let\cals@hbox=\hboxR}

290 \newcommand\cals@deactivate@rtl{\let\cals@hbox=\hbox}

291 \cals@deactivate@rtl

\cals@issue@rowsep@alone Typesets the top (or bottom) frame of a table: combines \cals@current@rs@above
and \cals@framers@width and outputs the row separator.

292 \newcommand\cals@issue@rowsep@alone{%

293 \setbox0=\cals@hbox\cals@tohsize{%

294 \cals@hskip@lr\leftskip\rightskip

295 \cals@rs@sofar@reset

296 \cals@rs@joinOne\cals@framers@width\cals@current@rs@above

297 \cals@rs@sofar@end

298 \cals@hskip@lr\rightskip\leftskip}%

299 \ht0=0pt \dp0=0pt \box0 }

\cals@issue@rowsep Combine row separations \cals@last@rs@below and \cals@current@rs@above,
taking into considiration the width of the rule:

• n to h, f, b (the top frame): use \cals@framers@width and ignore
last@rs@below because we don’t have it

• h to h, b to b, f to f (the usual separator): use \cals@rs@width

• for all other combinations (header to body, body to footer), including im-
possible: use \cals@bodyrs@width

300 \newcommand\cals@issue@rowsep{%

301 \ifx n\cals@last@context \cals@issue@rowsep@alone \else

302 \ifx \cals@last@context\cals@current@context

303 \let\cals@tmpIII=\cals@rs@width \else

304 \let\cals@tmpIII=\cals@bodyrs@width \fi

305 \setbox0=\cals@hbox\cals@tohsize{%

306 \cals@hskip@lr\leftskip\rightskip

307 \cals@rs@sofar@reset

14

308 \cals@rs@joinTwo\cals@tmpIII\cals@last@rs@below\cals@current@rs@above

309 \cals@rs@sofar@end

310 \cals@hskip@lr\rightskip\leftskip}%

311 \ht0=0pt \dp0=0pt \box0 %

312 \fi}

\cals@last@row@height For spanning support, we need to remember the height of the last row

313 \newdimen\cals@last@row@height

\cals@issue@row Typesets the current row and its decorations, then updates the last context. Re-
gards \leftskip and \rightskip by putting them inside the row.

314 \newcommand\cals@issue@row{%

Decorations: first the column separation, then the row separation.

315 \nointerlineskip

316 \setbox0=\vtop{\cals@hbox\cals@tohsize{\cals@hskip@lr\leftskip\rightskip

317 \box\cals@current@cs \cals@hskip@lr\rightskip\leftskip}}%

318 \ht0=0pt\relax\box0

319 \nointerlineskip

320 \cals@issue@rowsep

321 \nointerlineskip

Output the row, update the last context.

322 \cals@hbox\cals@tohsize{\cals@hskip@lr\leftskip\rightskip

323 \box\cals@current@row \cals@hskip@lr\rightskip\leftskip}%

324 \let\cals@last@rs@below=\cals@current@rs@below

325 \let\cals@last@context=\cals@current@context

326 \nobreak}

3.5 Table elements

\calstable Setup the parameters and let the row dispatcher to do all the work.

327 \newenvironment{calstable}[1][\cals@table@alignment]{%

328 \if@RTL\@RTLtabtrue\cals@activate@rtl\fi

329 \let\cals@thead@tokens=\relax

330 \let\cals@tfoot@tokens=\relax

331 \let\cals@tbreak@tokens=\relax

332 \cals@tfoot@height=0pt \relax

333 \let\cals@last@context=n%

334 \let\cals@current@context=b%

335 \parindent=0pt \relax%

336 \cals@setup@alignment{#1}%

337 \cals@setpadding{Ag}\cals@setcellprevdepth{Al}\cals@set@tohsize%

338 %% Alignment inside is independent on center/flushright outside

339 \parfillskip=0pt plus1fil\relax

340 \let\cals@borderL=\relax

341 \let\cals@borderR=\relax

342 \let\cals@borderT=\relax

343 \let\cals@borderB=\relax

15

Bug fix for http://tex.stackexchange.com/questions/167400/fancyhdr-and-cals-vertical-merge-problem.
Table inside a table is ok, but when there are 1) page break inside a table in the
text flow, and 2) a table with a vertically straddled cell is created in the output
procedure, then this table inside table needs additional cleaning.

344 \setbox\cals@backup@row=\box\voidb@x\relax

345 \cals@AtBeginTable

346 }{% End of the table

347 \cals@tfoot@tokens\lastrule\cals@AtEndTable}

\cals@AtBeginTable

\cals@AtEndTable

Callbacks for more initialization possibilities.

348 \newcommand\cals@AtBeginTable{}%

349 \newcommand\cals@AtEndTable{}%

\lastrule Typesets the last rule (bottom frame) of a table chunk. Repeatable calls are
ignored. Useful in the macro \tfoot.

350 \newcommand\lastrule{%

351 \ifx r\cals@last@context \relax \else

352 \let\cals@last@context=r%

353 \nointerlineskip

354 \let\cals@current@rs@above=\cals@last@rs@below\cals@issue@rowsep@alone%

355 \fi}

\thead Table: the header. Remember for later use, typeset right now.

356 \newcommand\thead[1]{%

357 \def\cals@thead@tokens{\let\cals@current@context=h%

358 #1\let\cals@current@context=b}%

359 \cals@thead@tokens}

\tfoot Table: the footer. Remember for later use. Right now, typeset to a box to
calculate an expected height for the table breaker \cals@ifbreak.

360 \newcommand\tfoot[1]{%

361 \def\cals@tfoot@tokens{\let\cals@current@context=f#1}%

362 \setbox0=\vbox{\cals@tfoot@tokens}%

363 \cals@tfoot@height=\ht0 \relax}

\cals@tfoot@height The height of the footer.

364 \newdimen\cals@tfoot@height

\tbreak Table: force a table break. Argument should contain something like \penalty-10000 .

365 \newcommand\tbreak[1]{\def\cals@tbreak@tokens{#1}}

\cals@table@alignment The default alignment of tables in the text flow. Doesn’t affect the text alignment
inside cells.

• n: no settings, the default \leftskip and \rightskip are used

• l: align left

• c: align center

16

http://tex.stackexchange.com/questions/167400/fancyhdr-and-cals-vertical-merge-problem

• r: align right

This setting is appeared in the version 2.3. Earlier versions worked as it were n.

366 \newcommand\cals@table@alignment{l}

3.6 List list of tokens

Two-dimensional arrays of tokens, or lists of lists of tokens.
Format of the list:

{...tokens1...}{...tokens2...}...{...tokensN...}

Token manipulation should not belong to the “cals” package, and the macros
from this section have the prefix llt@ instead of cals@. Probably it is better
to use some CTAN package, but initially the llt-code was small and simple, so I
did not want dependencies, and now I do not want to replace working code with
something new.

In comments to these functions, a parameter of type token list is a macro which
will be expanded once to get the tokens, and list list is a macro which stores the
two-dimensional array.

An example of use:

\def\aaa{aaa}

\def\bbb{bbb}

\def\ccc{ccc}

\def\lst{} % empty list

\llt@cons\bbb\lst % \lst -> "{bbb}"

\llt@snoc\lst\ccc % \lst -> "{bbb}{ccc}"

\llt@cons\aaa\lst % \lst -> "{aaa}{bbb}{ccc}"

\llt@decons\lst % \llt@car -> "aaa", \lst -> "{bbb}{ccc}"

\llt@rot\lst % \llt@car -> "bbb", \lst -> "{ccc}{bbb}"

\llt@cons Prepends the token list #1 to the list list #2. Corrupts the token registers 0
and 2.

367 \def\llt@cons#1#2{%

368 \toks0=\expandafter{#1}%

369 \toks2=\expandafter{#2}%

370 \edef#2{\noexpand{\the\toks0}\the\toks2 }%

371 }

\llt@snoc Appends the token list #2 to the list list #1 (note the order of parameters). Macro
corrupts the token registers 0 and 2.

372 \def\llt@snoc#1#2{%

373 \toks0=\expandafter{#1}%

374 \toks2=\expandafter{#2}%

375 \edef#1{\the\toks0 \noexpand{\the\toks2}}%

376 }

17

\llt@car A token list, set as a side-effect of the list deconstruction and rotation functions.

\llt@decons List deconstruction. The first item is removed from the list list #1 and its tokens
are put to the token list \llt@car. Corrupts the token register 0. Undefined
behaviour if the list list has no items.

The actual work happens on the \expandafter line. It’s hard to explain, let
me show the macro expansion, I hope it’s self-explaining.

\expandafter\llt@decons@open\lst} -->

\llt@decons@open{aaa}{bbb}{ccc}{ddd}} -->

\def\llt@car{aaa} \toks0=\llt@opengroup {bbb}{ccc}{ddd}} -->

\def\llt@car{aaa} \toks0={{bbb}{ccc}{ddd}}

Why I use \let\llt@opengroup={ inside the definition? Only to balance the
number of opening and closing brackets. Otherwise TeX will not compile the
definition.

Initially I tried to use the following helper:

\def\decons@helper#1#2\relax{%

\def\llt@car{#1}%

\def\list{#2}}

If a call is \decons@helper{aaa}{bbb}{ccc}\relax then all is ok, the helper
gets: #1 is aaa and #2 is {bbb}{ccc}.

Unfortunately, if the list has two items and the call is \decons@helper{aaa}{bbb}}\relax,
then the helper gets: #1 is aaa and #2 is bbb instead of {bbb}. The grouping
tokens are lost, and we can’t detect it.

377 \def\llt@decons@open#1{%

378 \def\llt@car{#1}%

379 \toks0=\llt@opengroup

380 }

381

382 \def\llt@decons#1{%

383 \let\llt@opengroup={%

384 \expandafter\llt@decons@open#1}%

385 \edef#1{\the\toks0}%

386 }

\llt@rot Rotates the list list #1. The first item becomes the last. Also, its tokens are
saved to token list \llt@car. The second item becomes the first item, the third
the second etc. Corrupts the token registers 0 and 2.

387 \def\llt@rot#1{%

388 \ifx#1\empty

389 \let\llt@car=\relax

390 \else

391 \llt@decons#1%

392 \llt@snoc#1\llt@car%

18

393 \fi

394 }

\llt@desnoc Very unefficient list deconstruction. The last item is removed from the list list #1
and its tokens are put to the token list \llt@car. Corrupts the token registers 0
and 2. Undefined behaviour if the list list has no items.

\llt@desnocII is used to hide \if from the loop.

395 \def\llt@desnocII#1{

396 \ifx\empty#1%

397 \let\llt@tmp=n%

398 \else

399 \llt@snoc{\llt@newlist}{\llt@car}%

400 \let\llt@tmp=y%

401 \fi

402 }

403

404 \def\llt@desnoc#1{%

405 \def\llt@newlist{}%

406 \loop

407 \llt@decons{#1}%

408 \llt@desnocII{#1}%

409 \if y\llt@tmp \repeat

410 \let#1=\llt@newlist}

4 Decorations

How much decoration requires a table? Initially I thought to implement a generic
approach, so an user could extend the set of what is possible—for example, a
dashed border instead of a solid one. But this is a hard task for me, therefore I
switched back to the fixed set of properties. Indeed, the use case for cals tables is
technical documentation, not a wanna-be designer showcases.

The fixed set of decoration properties:

• padding

• border thickness

• cancelled after some thinking: border color

• cell background

In the first version of this package, decorations could be defined for all cells in
a row, for all cells in a column and finally specially for a cell. Unfortunately, this
approach does not work for borders of multipage tables, when the decorations on
a break are different to the internal decorations. Trying different workarounds, I
finally found a descriptive and direct approach: define default decorations for a
cell plus define decorations for the table frame.

How to decorate the common border of two cells? The following seems reason-
able:

19

• The priority of settings: from the user, from the table frame, default. If cells
have different priorities, use the highest one.

• When priorities are the same, use the maximal thinkness.

Imagine that the user uses only default decorations. Then all the internal
vertical borders are the same, and all internal horizontal border are also the same.
It took me time to understand this obvious thing, that for the default setup we
need to define settings only for vertical and horizontal borders, not for all four
borders.

Column separation and row separation are two very different creatures. The
former is fixed after a row is processed, the latter could change somewhen later
due to a table break.

4.1 Setters and getters

No more setter and getters provided to discourage cell formatting. At the moment,
if you really need it, use the knowledge of the internal variables.

\cals@cs@width Width of column separators (vertical borders). For all the widths, 0pt disables
the rule.

\cals@framecs@width Width of the left and right table frame border.

\cals@rs@width Width of row separators (horizontal borders).

\cals@framers@width Width of the top and bottom table frame border.

\cals@bodyrs@width Width of row separators between the body and the header or the footer.

\cals@bgcolor Background color of the cells. If the macro is empty, it means no background.

411 \newcommand\cals@cs@width{.4pt}

412 \newcommand\cals@framecs@width{0pt}

413 \newcommand\cals@rs@width{.4pt}

414 \newcommand\cals@framers@width{0pt}

415 \newcommand\cals@bodyrs@width{1.2pt}

416 \newcommand\cals@bgcolor{}

\cals@borderL

\cals@borderT

\cals@borderR

\cals@borderB

Overrides for the widths of the cell borders (left, top, right or bottom). Macros,
set to \relax by the calstable environment.

Padding parameters (\cals@paddingL etc) and related macros (\alignC etc)
are defined near the macro \cell.

4.2 Decorations for a row

The whole code in this section is devoted to provide functionality for the functions
\cals@decor@begin, ...@next, ...@end. After a row is ended, we have the
following decorations:

• column separation: box \cals@current@cs

20

• rowsep specification for the top: macro \cals@rs@above

• rowsep specification for the bottom: macro \cals@rs@below

The high-level approach is obvious: we construct the decorations cell-by-cell. First,
we calculate column separation, getting the width of the left and the right border.
Then we use these values to update the border above and below. Unfortunately,
there is a lot of small details. For example, as explained later, we construct the
decorations with a delay, therefore the end-function is just a special sort of the
next-function.

\cals@decor@begin Initialization.

417 \newcommand\cals@decor@begin{\cals@csrow@begin\cals@rs@spec@begin}

\cals@decor@next Updates the decorations. The argument is the width of the cell.

418 \newcommand\cals@decor@next[1]{%

419 \cals@csrow@nextcell{#1}\cals@borderL\cals@borderR\cals@bgcolor

420 \cals@rs@spec@next{#1}\cals@lastLeftWidth\cals@borderT\cals@borderB}

\cals@decor@end Finishes the decorations. Uses \cals@lastLeftWidth, which is the width of the
last right border.

421 \newcommand\cals@decor@end{%

422 \cals@csrow@end

423 \cals@rs@spec@end\cals@lastLeftWidth}

4.3 Deciding on the width and color

\cals@widthII

\cals@withWidthII

Calculate a final width from the default one (argument 1) and user-specified (ar-
gument 2, \relax means use the default), put it to the macro \cals@width. Also,
the macro withWidthII start a conditional construction, true branch is executed
when the width is not zero. Unused #3 is for if-fi balancing, see \cals@iftrue.

424 \newcommand\cals@widthII[2]{%

425 \ifx \relax#2\edef\cals@width{#1}%

426 \else \edef\cals@width{#2}\fi}

427

428 \newcommand\cals@withWidthII[3]{%

429 \cals@widthII{#1}{#2}%

430 \ifdim \cals@width>0pt }

\cals@withColorII Calculate a final color from the default one (argument 1) and user-specified (argu-
ment 2, \relaxmeans use the default), set the macro \cals@color to it. The both
arguments must be macro names, not token lists. Start a conditional construction,
true branch is executed when the color name is given (not empty). Unused #3 is
for if-fi balancing, see \cals@iftrue.

431 \newcommand\cals@withColorII[3]{%

432 \ifx \relax#2\edef\cals@color{#1}%

433 \else \edef\cals@color{#2}\fi

21

Reversing a condition. Based on \ifnot macro by David Kastrup posted to
comp.text.tex 2 March 1998, Message-ID: <m2en0lebuc.fsf@mailhost.neuroinformatik.ruhr-uni-bochum.de>#1/1.

434 \ifx \cals@color\empty \else\expandafter\expandafter\fi\iffalse\iftrue\fi}

\cals@halfWidthToDimen Puts the half of the width in #2 to the dimension register #1.

435 \newcommand\cals@halfWidthToDimen[2]{%

436 \dimen#1=#2\relax \divide\dimen#1 by 2 }

\cals@maxWidth Of two widths, given as macros, selects the maximal and put the result to
\cals@width. Takes care for \relax.

437 \newcommand\cals@maxWidth[2]{%

438 \ifx \relax#1\relax

439 \ifx \relax#2\let\cals@width=\relax

440 \else \edef\cals@width{#2}\fi

441 \else

442 \ifx \relax#2\relax

443 \edef\cals@width{#1}%

444 \else

445 \ifdim #1>#2 \edef\cals@width{#1}%

446 \else \edef\cals@width{#2}\fi\fi\fi}

\cals@iftrue

\cals@iffalse

Balancing if-fi. The following does not work:

\let\next=\iftrue ...

\if ... \next ... \fi ... \fi

But this code does work:

\let\next=\cals@iftrue ...

\if ... \next\iftrue ... \fi ... \fi

We use \iftrue (or any other if-start), which is taken into account when scanning
for the fi-else-if balance, but ignored when executed.

447 \def\cals@iftrue#1{\iftrue}

448 \def\cals@iffalse#1{\iffalse}

4.4 Column separation (colsep) and cell background

In-row decorations are the vertical borders between the cells and also the back-
ground color of the cells.

\cals@cs@outOne Typesets the background and the left border of a cell. Decorations have zero depth
and undefined height. Parameters:

1. Width of the cell. The use of \relax avoids typesetting the cell itself, which
is used when creating the right frame of a table.

2. Width of the border. 0pt is no border.

22

3. Color of the background. Empty macro is no color.

If some arguments are undefined (through \relax), global variables are used:
\cals@bgcolor and \cals@cs@width.

Corrupts dimen0.

449 \newcommand\cals@cs@outOne[3]{%

Create the full-width background

450 \ifx \relax#1%

451 \else

452 \cals@withColorII\cals@bgcolor{#3}\iftrue

453 \textcolor{\cals@color}{\vrule depth0pt width#1 }%

454 \hskip -#1\relax

455 \fi

456 \fi

The border. I feel that overprinting the background is good, but I don’t know
why I think so.

457 \cals@withWidthII\cals@cs@width{#2}\iftrue

458 \cals@halfWidthToDimen0 \cals@width %

459 \hskip -\dimen0 %

460 \vrule depth0pt width\cals@width\relax

461 \hskip -\dimen0 %

462 \fi

We will need the actual width of the left border in a grand-grand-...-caller, when
constructing a rowsep specification.

463 \let\cals@lastLeftWidth=\cals@width

Add width to skip to the next cell.

464 \ifx \relax#1\else \hskip#1 \fi

465 }

\cals@current@cs The box to store column separation.

466 \newbox\cals@current@cs

\cals@csrow@begin

\cals@csrow@nextcell

\cals@csrow@end

Constructs an hbox with colsep decorations. Call to the begin-macro re-initializes
\cals@current@cs and makes that the left table frame border is of the correct
width. The end-macro creates the right border for the right table frame. The
most work is performed in the nextcell-macro. Arguments:

1. Width of the cell

2. Width of the left border

3. Width of the right border, must be a macro name

4. Background color of the cell

23

For the special conditions (\relax, 0pt, empty name) see the description of
\cals@cs@outOne. The right border is not typeset immediately. Instead, it is
saved to \cals@lastWidth (as \relax if no overrides) and is handled by the next
call to nextcell.

467 \newcommand\cals@csrow@begin{%

468 \setbox\cals@current@cs=\box\voidb@x %

469 \let\cals@lastWidth=\relax}

470

471 \newcommand\cals@csrow@nextcell[4]{%

For the first cell, temporarily re-define the default border width to the frame
border. Macro \next will restore it back.

472 \ifvoid\cals@current@cs

473 \toks0=\expandafter{\cals@cs@width}%

474 \def\next{\edef\cals@cs@width{\the\toks0}}%

475 \edef\cals@cs@width{\cals@framecs@width}%

476 \else \let\next=\relax \fi

Create the decorations, remember the right border. Restore the value lastLeftWidth
after the end of the hbox-group.

477 \cals@maxWidth\cals@lastWidth{#2}%

478 \setbox\cals@current@cs=\hbox{\unhbox\cals@current@cs

479 \cals@cs@outOne{#1}\cals@width{#4}%

480 \global\let\cals@tmp=\cals@lastLeftWidth}%

481 \let\cals@lastLeftWidth=\cals@tmp

482 \let\cals@lastWidth=#3%

Restore the old value of the default border width.

483 \next}

484

User-specified width (initially by borderR, now located in lastWidth) must over-
ride the frame width.

485 \newcommand\cals@csrow@end{%

486 \ifx \relax\cals@lastWidth

487 \let\cals@width=\cals@framecs@width

488 \else

489 \let\cals@width=\cals@lastWidth

490 \fi

491 \cals@csrow@nextcell\relax\cals@width\relax\relax}

4.5 Row separation (rowsep)

4.5.1 Data presentation

A horizontal line between table rows can’t appear in the output immediately. Its
formatting should be postponed until the next row and its context are known.
Two basic cases:

• The default cell formatting is to have a border around cells. For some cell A
in the middle of a table, the user has overridden formatting to no borders.

24

To imlement the user’s wish, we should not create the bottom border for the
cell B which is above the A. But we don’t know about the wish for A while
processing B. Therefore, the border between two rows can be established
only after processing the both rows.

• The default cell border is 1pt, but a border between a body and a header or
a footer row is 2pt. It means that the border between two rows should be
created only after we sure that there is no table break.

Our approach is to define the desired formatting of a rowsep as a set of parameters
in a token list. Later we can join two rowseps or a rowsep and context to a final
rowsep.

A rowsep token list consist of several items, each item is a list of tokens or
token groups:

1. length

2. left-border

3. right-border

4. user-specified thickness

Values left-border and right-border are required to get a nice rectangle border
around a cell. Without length correction, using the cell dimension, the border
could look like:

xxxxxxxx

xxx cell xxx

xxxxxxxx

With length correction, we get the correct result:

xxxxxxxxxxxx

xxx cell xxx

xxxxxxxxxxxx

Here is an example of a rowsep specification. It consist of three items. The
first item: length is 5cm, width 2pt, borders are 2mm. The second item: length is
9cm, borders are 2mm, no rule at all. The third item: length 2cm, default width,
borders are 2pt. The token list for this specification:

{ {5cm} {2mm} {2mm} {2pt} }

{ {9cm} {2mm} {2mm} {0pt} }

{ {2cm} {2pt} {2pt} \relax }

Cell length and the left and right borders should be the correct lengths, the
rule thickness can be \relax, in this case the actual thickness will be calculated
during output.

25

\cals@rs@pack Construct a rowsep fragment from the arguments 2-5 and put it to the macro 1.

492 \newcommand\cals@rs@pack[5]{%

493 \edef#1{\noexpand{#2\noexpand}\noexpand{#3\noexpand}\noexpand{#4\noexpand}%

494 \ifx \relax#5\relax \else \noexpand{#5\noexpand}\fi }}

\cals@rs@unpack The reverse for \cals@rs@pack. The first argument is a rowsep fragment (without
enclosing curly braces), arguments 2-5 is macro names where to put the results.

495 \newcommand\cals@rs@unpack[5]{%

496 \def\cals@tmp##1##2##3##4{\edef#2{##1}\edef#3{##2}\edef#4{##3}%

497 \ifx\relax##4\let#5=\relax \else \edef#5{##4}\fi}%

498 \expandafter\cals@tmp#1}

4.5.2 From individual decorations to rowsep specification

The rowsep specifications are created cell-by-cell and stored in the macros
\cals@current@rs@above and \cals@current@rs@below. The construction hap-
pens with delay because we don’t know the exact value of the right border until
the next cell is processed.

\cals@rs@spec@begin Initializes \cals@current@rs@above, \cals@current@rs@below and set the flag
of a new row.

499 \newcommand\cals@rs@spec@begin{%

500 \def\cals@current@rs@above{}%

501 \def\cals@current@rs@below{}%

502 \let\cals@rs@spec@ll=\relax}

\cals@rs@spec@next

\cals@rs@spec@nextII

Finalizes the decorations for the previous cell by using the left border of the
current as the right border for the previous. Then remembers the decorations of
the current cell — the left border width, the widths of the top and bottom borders
(\relax is ok) — in the macros \cals@rs@spec@ll, ...@bl, ...@bt, ...@bb. All
the arguments much be macros.

503 \newcommand\cals@rs@spec@next[4]{

504 \cals@rs@spec@nextII#2

505 \let\cals@rs@spec@ll=#1%

506 \let\cals@rs@spec@bl=#2%

507 \let\cals@rs@spec@bt=#3%

508 \let\cals@rs@spec@bb=#4%

509 }

510

511 \newcommand\cals@rs@spec@nextII[1]{%

512 \ifx \relax\cals@rs@spec@ll \else

513 \cals@rs@pack\cals@tmp\cals@rs@spec@ll\cals@rs@spec@bl#1\cals@rs@spec@bt

514 \llt@snoc\cals@current@rs@above\cals@tmp

515 \cals@rs@pack\cals@tmp\cals@rs@spec@ll\cals@rs@spec@bl#1\cals@rs@spec@bb

516 \llt@snoc\cals@current@rs@below\cals@tmp

517 \fi

518 }

26

\cals@rs@spec@end Finishes the rowsep specification by putting the last cell to it. The only implicit
argument (\cals@lastLeftWidth) is the width of the right border of the last cell.

519 \newcommand\cals@rs@spec@end[1]{}

520 \let\cals@rs@spec@end=\cals@rs@spec@nextII

4.5.3 “Waiting” rowsep

\cals@rs@sofar@length

\cals@rs@sofar@borderl

\cals@rs@sofar@borderr

\cals@rs@sofar@width

Typesetting a row separator is not an easy task, especially because we support
border-widths. Indeed, consider the worst case: four cells and all the borders
are different. Our solution is an optimizer for a good case. We do not typeset
a fragment of the rule immediately. Instead, we remember the parameters. If
the next fragment is of the same width, we increase the length of the “waiting”
fragment. Otherwise, we output the waiting fragment and the new fragment
becomes the new waiting fragment.

521 \newcommand\cals@rs@sofar@length{}

522 \newcommand\cals@rs@sofar@borderl{}

523 \newcommand\cals@rs@sofar@borderr{}

524 \newcommand\cals@rs@sofar@width{}

\cals@rs@sofar@reset Sets a flag that a new waiting rule should be started.

525 \newcommand\cals@rs@sofar@reset{\let\cals@rs@sofar@width=\relax}

\cals@rs@sofar@end Prints the waiting rule, if exists.

526 \newcommand\cals@rs@sofar@end{\ifx\relax\cals@rs@sofar@width

527 \else\cals@rs@sofar@out\fi}

\cals@rs@sofar@next Enlarges the current waiting rule, or typesets it and starts new if the widths do not
match. All the parameters must be macro names. In order: length, left border,
right border, width.

528 \newcommand\cals@rs@sofar@next[4]{%

529 \ifx\relax\cals@rs@sofar@width

Starts a new waiting rule.

530 \let\cals@rs@sofar@length=#1%

531 \let\cals@rs@sofar@borderl=#2%

532 \let\cals@rs@sofar@borderr=#3%

533 \let\cals@rs@sofar@width=#4%

534 \else

535 \ifdim \cals@rs@sofar@width=#4\relax

Enlarges the waiting rule.

536 \dimen0=\cals@rs@sofar@length\relax

537 \advance\dimen0 by #1\relax

538 \edef\cals@rs@sofar@length{\the\dimen0}%

539 \let\cals@rs@sofar@borderr=#3%

540 \else

Typesets the current and start a new waiting rule.

541 \cals@rs@sofar@out

27

542 \let\cals@rs@sofar@length=#1%

543 \let\cals@rs@sofar@borderl=#2%

544 \let\cals@rs@sofar@borderr=#3%

545 \let\cals@rs@sofar@width=#4%

546 \fi

547 \fi}

\cals@rs@sofar@over Repeats the last rowsep fragment, probably with another settings. Arguments are
like in \cals@rs@sofar@next.

548 \newcommand\cals@rs@sofar@over[4]{%

549 \ifdim 0pt=#4

550 \relax

551 \else

552 \ifdim \cals@rs@sofar@width=#4\relax

The width is not changed. We probably need to enlarge the right border and
probably the left border too. The latter is a bit harder because we don’t
want to change it if the line continues from another cell (so, change only if
length+borderl>sofar@length+sofar@borderl).

553 \ifdim #3>\cals@rs@sofar@borderr\relax

554 \edef\cals@rs@sofar@borderr{#3}%

555 \fi

556 \dimen0=\cals@rs@sofar@length

557 \advance\dimen0 by \cals@rs@sofar@borderl\relax

558 \advance\dimen0 by -#2\relax

559 \ifdim #1>\dimen0 \relax

560 \edef\cals@rs@sofar@borderl{#2}%

561 \fi

562 \else

Typesets the current and start a new waiting rule.

563 \cals@rs@sofar@out

564 \hskip-#1\relax

565 \let\cals@rs@sofar@length=#1%

566 \let\cals@rs@sofar@borderl=#2%

567 \let\cals@rs@sofar@borderr=#3%

568 \let\cals@rs@sofar@width=#4%

569 \fi

570 \fi}

\cals@rs@sofar@out Typesets the waiting rule

571 \newcommand\cals@rs@sofar@out{%

572 \ifdim 0pt=\cals@rs@sofar@width\relax

573 \hskip\cals@rs@sofar@length\relax

574 \else

575 \cals@halfWidthToDimen0\cals@rs@sofar@borderl

576 \hskip-\dimen0\relax

577 \cals@halfWidthToDimen2\cals@rs@sofar@borderr

578 \dimen4=\cals@rs@sofar@length\relax

579 \advance\dimen4 by \dimen0\relax \advance\dimen4 by \dimen2\relax

28

580 \cals@halfWidthToDimen6\cals@rs@sofar@width

581 \vrule height\dimen6 depth\dimen6 width\dimen4\relax

582 \hskip-\dimen2\relax

583 \fi}

4.5.4 From rowsep specification to typesetting

\cals@rs@joinTwo Join and typeset two rowseps (arguments 2 and 3, must be macro names). The
number and the lengths of the fragments in the rowseps should match. The argu-
ment 1 (also a macro name) is the default width. Corrupts the macros 2 and 3.
Call this macro inside sofar@reset...@end group.

584 \newcommand\cals@rs@joinTwo[3]{%

The loop function.

585 \def\next##1{%

586 \ifx \eol##1\let\next=\relax

587 \else

588 \toks0=\expandafter{##1}%

589 \edef\cals@tmpII{\the\toks0}%

590 \llt@decons#3%

Now \cals@tmpII contains a current fragment of the first rowsep, and \llt@car

of the second. Unpack the individual parameters.

591 \cals@rs@unpack\cals@tmpII\cals@tmpLI \cals@tmpBlI \cals@tmpBrI \cals@tmpWI

592 \cals@rs@unpack\llt@car \cals@tmpLII\cals@tmpBlII\cals@tmpBrII\cals@tmpWII

The special case is when we should not typeset a rowsep fragment.

593 \let\cals@tmp=\cals@iftrue

594 \cals@maxWidth\cals@tmpWI\cals@tmpWII

595 \ifx \relax\cals@width\else \ifdim \cals@width=0pt %

596 \cals@rs@sofar@next\cals@tmpLI\cals@tmpBlI\cals@tmpBrI\cals@width

597 \let\cals@tmp=\cals@iffalse

598 \fi\fi

Not the special case. Put the both definitions, and let the underlying functions
take care of calculations.

599 \cals@tmp\ifvoid

600 \cals@widthII#1\cals@tmpWI

601 \cals@rs@sofar@next\cals@tmpLI\cals@tmpBlI\cals@tmpBrI\cals@width

602 \cals@widthII#1\cals@tmpWII

603 \cals@rs@sofar@over\cals@tmpLII\cals@tmpBlII\cals@tmpBrII\cals@width

604 \fi

605 \fi

End of \next definition: continue the loop. End of \cals@rs@joinTwo definition:
start the loop.

606 \next}%

607 \expandafter\next#2\eol}

29

\cals@rs@joinOne A simplified version of the previous macro. We have only one rowsep, and want to
join and typeset it with regard to some width, given as the first macro parameter.
Call this macro inside sofar@reset...@end group.

608 \newcommand\cals@rs@joinOne[2]{%

609 \def\next##1{\ifx\eol##1\let\next=\relax\else

610 \toks0=\expandafter{##1}%

611 \edef\cals@tmpII{\the\toks0}%

612 \cals@rs@unpack\cals@tmpII\cals@tmpL\cals@tmpBl\cals@tmpBr\cals@tmpW

613 \cals@widthII#1\cals@tmpW

614 \cals@rs@sofar@next\cals@tmpL\cals@tmpBl\cals@tmpBr\cals@width

615 \fi\next}%

616 \expandafter\next#2\eol}

4.6 RTL (right-to-left) hooks

\if@RTL

\if@RTLtab

\@RTLtabtrue

Provide RTL status commands even if the RTL packages are not loaded.

617 \def\next{%

618 \let\if@RTL=\iffalse

619 \let\if@RTLtab=\iffalse

620 \let\@RTLtabtrue=\relax

621 }

622 \ifdefined\if@RTL \relax \else \next \fi

\cals@setup@alignment Swap alignment in the RTL mode.

623 \newcommand\cals@setup@alignment[1]{%

624 \if c#1\relax \cals@vfillAdd \leftskip \cals@vfillAdd \rightskip \fi

625 \if@RTL

626 \if l#1\relax \cals@vfillAdd \leftskip \cals@vfillDrop\rightskip \fi

627 \if r#1\relax \cals@vfillDrop\leftskip \cals@vfillDrop\rightskip \fi

628 \else

629 \if l#1\relax \cals@vfillDrop\leftskip \cals@vfillDrop\rightskip \fi

630 \if r#1\relax \cals@vfillAdd \leftskip \cals@vfillDrop\rightskip \fi

631 \fi

632 }

\cals@hskip@lr Do hskip with the first argument, unless in the RTL mode.

633 \newcommand\cals@hskip@lr[2]{%

634 \if@RTL \hskip#2\relax \else \hskip#1\relax \fi}

30

	Introduction
	Usage
	Implementation
	Creating cells
	Cell padding

	From cells to a row
	Spanned cells
	Row dispatcher
	Table elements
	List list of tokens

	Decorations
	Setters and getters
	Decorations for a row
	Deciding on the width and color
	Column separation (colsep) and cell background
	Row separation (rowsep)
	Data presentation
	From individual decorations to rowsep specification
	``Waiting'' rowsep
	From rowsep specification to typesetting

	RTL (right-to-left) hooks

