
The boxhandler Package
Tools for Optimizing Captions, Presentation, and Placement of Tables and Figures

Steven B. Segletes
steven.b.segletes.civ@mail.mil

2012/10/18
v1.30

Abstract

This package facilitates the optimized presentation of LATEX tables and
figures. Not only can boxhandler conveniently lay out table and figure cap-
tions with a wide variety of stylistic appearances, but allows for figures and
tables to be “wrapped” in a manner consistent with many business and gov-
ernment documents. For a document that might appear in different venues
with different formatting, boxhandler very powerfully permits the creation
of a LATEX source document that can, with a single-line change in the source
code, produce an output that has vastly different layout from the baseline
configuration, both in terms of caption style, and in terms of the locations
where figures, tables and lists appear (or not) in the document. Deferral rou-
tines also allow one to keep all figure and table data in a separate source file,
while nonetheless producing a document with figures and tables appearing
in the desired location in the document.

Contents

1 Introduction 2

2 Caption Style, Appearance and Box Placement 2

2.1 Commands . 2

2.2 Additional User Parameters . 5

3 Figure and Table “Wrappers” 8

4 Box and List Deferral/Preemption 9

4.1 Description of Problem . 9

4.2 Deferral and Preemption Commands 10

1

5 Advanced Use (DANGER!) 14

6 Examples 17

7 Vestigials 18

8 Acknowledgments/Salutations 19

9 Code Listing 20

1 Introduction

The commands described in the boxhandler style accomplish a number of useful
functions. Even without the use of a conditionally-compiled document:

1. they allow the definition of figures and tables in compact routine calls;

2. they retain wide flexibility in caption appearance & table/figure placement,
through the use of simple setup calls.

And for those who wish, from a single LATEX source file to conditionally produce,
on one hand, an internal technical report for example, and on the other hand, a
journal manuscript submission, this style additionally allows:

3. printing of figures & tables to be [conditionally] deferred to later in the
document;

4. printing of lists (lof, lot) to be deferred later in document; and

5. the preemptive cancellation of the toc, lof, and lot.

2 Caption Style, Appearance and Box Placement

2.1 Commands

This routine provides several routines for creating and tailoring the appearance of
captioned “boxes” (that is, figures and tables). They include:

\bxtable[loc]{caption}{boxed object}
\bxfigure[loc]{caption}{boxed object}
\relaxCaptionWidth[len]
\limitCaptionWidth[len]
\constrainCaptionWidth[len]{len}

2

\captionStyle{offset type}{alignment type}
\hyperactive[len]

The routines \bxtable and \bxfigure will actually produce the complete table\bxtable

\bxfigure or figure, including caption. In these two routines, loc is an optional argument.
It can take on a value of: ht, hb, t, b, or p. This parameter refers to the same
location argument that goes with the LATEX float environments, to help LATEX
determine the placement of the item on your page. h is ‘here’, t is ‘top’, b is
‘bottom’, p is ‘page of floats’. Omitting the first argument just uses the default
placement of the table and figure environments.

In \bxtable and \bxfigure, caption is the argument that will eventually get
passed on to the \caption call, after the routine properly formulates it to match
the desired figure/caption style. The caption may include \label identifiers to be
referenced by the main text.

For \bxtable, the boxed object will typically be a tabular box, though any
LATEX boxed object will satisfy the routine. Thus, the difference between a
\bxtable and a \bxfigure is largely a semantic one. The true difference be-
tween \bxtable and \bxfigure in this regard is that the table caption is placed
above the table, whereas the figure caption is placed below it. In addition, be-
cause these routines make use of the standard \caption call within the table and
figure environments, calls to \bxtable and \bxfigure will have their references
automatically available to the List of Tables and List of Figures, respectively.

One of the differences between the boxhandler style and LATEX’s default cap-
tioning environment is the default caption width. Whereas LATEX defaults to a
full margin-to-margin caption width, boxhandler defaults to a caption width equal
to and aligned with the width of the box being captioned. However, this caption-
width default within boxhandler can be changed to any arbitrary value, including
full-width, if desired. The caption width, through the use of the “dead margin,”
can also be conveniently set to a fixed offset from the table or figure width. For ex-
ample, all table captions could be set to a width 1 inch larger than their associated
tables.

The routine \relaxCaptionWidth takes as its optional argument a length di-\relaxCaptionWidth

mension corresponding to the minimum allowed caption width, even if an associ-
ated table or figure is of lesser box width. While this command might technically
violate an organization’s style guideline, it allows one to avoid the situation of
trying to assign a caption to fit the width dimension of an extremely narrow ta-
ble or figure. An example of this use is shown in Tables 1 and 2. In the first
table, the default minimum caption width of 1 inch is retained, resulting in an
unwieldy caption. The second table has been printed following an invocation
of \relaxCaptionWidth[4.0in]. Using \relaxCaptionWidth with no argument
resets the minimum allowed caption width to the default value of 1 inch.

If the minimum caption width is relaxed, the maximum allowed width will be
bumped up, if necessary, to remain greater than or equal to the minimum allowed
caption width.

3

Table 1. A table
which
provides
the
secret
entry-
word of
the Hal-
loween
Ghost
Club,
assum-
ing you
can
read the
caption.

Boohoocachoo

Table 2. A table which provides the secret entryword of the Halloween
Ghost Club, assuming you can read the caption.

Boohoocachoo

The routine \limitCaptionWidth is analogous to \relaxCaptionWidth. In\limitCaptionWidth

this case, however, the maximum allowable caption width will be defined. If no
argument is specified, the maximum allowed caption width is reset to the default
value, which is \textwidth.

If the maximum caption width is constrained, the minimum allowed width will
be reduced, if necessary, to remain less than or equal to the maximum allowed
caption width.

The minimum and maximum allowed caption widths may be simultaneously\constrainCaptionWidth

specified with \constrainCaptionWidth. The order of the two length arguments
is not important. Omitting the optional argument will cause both the min and
max allowable caption widths to be fixed at the specified value. In this manner,
all caption widths will be set to this single value, regardless of the size of the table
or figure box it describes. Note that the use of \constrainCaptionWidth with a
single argument of {\textwidth} allows a full-width left-to-right margin caption
style to be achieved, if desired, as in Figure 1.

To understand the the figure and table caption style command, examine the\captionStyle

caption styles in Figures 2–5, in reference to the boxed object with which they
are paired. \captionStyle{offset type}{alignment type} is a compact way of
specifying the caption style. The first parameter specifies the offset type for long

4

captions (since “offset” has no meaning for short captions). It can take the value of
o for “offset” captions, such as that found in Figure 2, or n for “nooffset” captions,
such as that found in Figure 3.

The second parameter specifies the alignment type for short captions (since long
captions are already fully aligned). It can take on the value of l for “left”-aligned
captions, such as that in Figure 4, the value c for “center”-aligned captions, such
as that in Figure 5, or the value of r for “right”-aligned captions.

The default style for this package is \captionstyle{o}{l}, or “offset”-style,
“left”-aligned captions. This default caption style is that displayed in Figures 2
and 4, for long and short captions, respectively.

Note that caption alignment is not the same as caption justification. Regard-
less of alignment, any caption of size sufficient to span the full width of the caption
box will be, by default, fully justified or “flushed” within that caption box. The
captions in Figures 1 and 2 demonstrate this for both offset and nooffset cap-
tion types. Text justification can, however, be altered, as described later by the
\CaptionJustification parameter.

\hyperactive was added in v1.22 to provide compatibility with the hyperref\hyperactive

package, which is known to redefine many LATEX variables, including \caption.
It was found, when the hyperref package was active, offset captions experienced
a vertical gap between the caption label and the caption text. The command
\hyperactive should be invoked only if the hyperref package is being utilized.
The optional argument to this command is the length that boxhandler will shift
the caption text downward, so as to achieve alignment with the caption label. The
default value is -1.55ex, which was the required corrective shift observed for some
applications, when the hyperref package was active.

2.2 Additional User Parameters

In addition to the above commands, there are a variety of lengths, counters, and
modes, which may be set by the user, to adjust the appearance of the caption pre-
sentation. The settings for all these parameters hold until and unless subsequently
reset by the user.

\setlength\captionGap{len}
\setlength\TableDeadMargin{len}
\setlength\FigureDeadMargin{len}
\setcounter{abovecaptionskipterm}{integer}
\setcounter{belowcaptionskipterm}{integer}
\let\CaptionFontSize fontsize, e.g., \small
\let\TableFontSize fontsize, e.g., \small
\def\LRTablePlacement{flushleft, center, or flushright}

\def\LRFigurePlacement{flushleft, center, or flushright}

\def\CaptionJustification{blank, \raggedright,
\centering, or \raggedleft}

5

Boxed Object: \constrainCaptionWidth{\textwidth}

Figure 1. Here is a full-width caption that takes up the full margin-to-margin dimension,
regardless of how wide the boxed object it serves is. In this case, the caption is of the
“nooffset” variety.

Boxed Object: \captionStyle{o}{}

Figure 2. For “offset” captions, the ID label
for the caption is offset to the left
of the caption text.

Boxed Object: \captionStyle{n}{}

Figure 3. For “nooffset” captions, the cap-
tion’s ID label is integrated into the caption
text itself.

Boxed Object: \captionStyle{}{l}

Figure 4. A short “left”-aligned caption.

Boxed Object: \captionStyle{}{c}

Figure 5. A short “center”-aligned caption.

6

\captionGap defines the horizontal space between the caption identifier (e.g.,\captionGap

“Figure 1.”) and the start of the caption text itself. Its default value is 1ex.

\TableDeadMargin and \FigureDeadMargin may be set to correct the caption\TableDeadMargin

\FigureDeadMargin alignment for boxes that have a deadzone around their border. Such dead space
takes up boxwidth, but shows no visible data. These parameter values should
be set to the left or right-hand dead space (assumed symmetric). The default
value for \TableDeadMargin, which is suitable for LATEX generated tabular data,
is 0.375em. The default for \FigureDeadMargin is 0em.

Additionally, these \...DeadMargin commands can be used to set the box-size-
to-caption-size disparity to any desired non-flush value. As an example, setting
the value of \FigureDeadMargin to 0.5 inch will make the figure captions always
1 inch smaller than the actual figure size. Setting it to −0.5 inch (a negative value!)
will make the caption always 1 inch larger than the actual figure size (within the
error of the actual figure dead margin width, and subject to the caption width
min/max constraints).

The quantities \abovecaptionskipterm and \belowcaptionskipterm are re-\abovecaptionskipterm

\belowcaptionskipterm lated to LATEX’s \abovecaptionskip and \belowcaptionskip functions, defining
the white- space above and below a caption. Unlike the corresponding LATEX
functions, the parameters here are integers (not lengths). The terms represent
multipliers of the LATEX length measure \p@ to be used for the above- and below-
captionskip. Their default values are 10 and 7, respectively. These values affect
only captions that are created as part of bxtable and bxfigure, and do not affect the
\abovecaptionskip and \belowcaptionskip definitions intrinsic to your default
document class.

\CaptionFontSize defines the default size of the caption font, for example ,\CaptionFontSize

\large, \scriptsize, etc. The default value is \small.

\TableFontSize defines the default size of the font that appears within the\TableFontSize

tables themselves. Its default value is \small.

\LRTablePlacement and \LRFigurePlacement define the horizontal place-\LRTablePlacement

\LRFigurePlacement ment of tables and figures with respect to the paper margins. The options for
these two parameters include {flushleft}, {center} and {flushright}. The
default is {center}. This is different from the “left”, “center”, and “right” align-
ment modes for captions, which align short captions with respect to the boxed
data.

By default, any caption that spans the entire width of the caption box will\CaptionJustification

be fully justified, or “flushed” with respect to the caption box margins. However,
this behavior can be reset by redefining the parameter \CaptionJustification.
For a ragged-right style within the caption box, the definition should be set to
\raggedright. For the brave and daring, \raggedleft and/or \centering can
be explored. Use \def\CaptionJustification{} to reset subsequent captions
for full flushing.

7

Boxed Object:
flushright placement →

2.5ex \scriptsize

caption gap caption font size \raggedright justification
↓ ↓ ↓

Figure 6. Here is one example of a caption that has been set for a
ragged right justification. Justification, or “flushing,” is
different than caption alignment, which is specified
independently and deals with how short captions are
aligned with respect to the boxed object.

\abovecaption-
skipterm = 3 →

\FigureDeadMargin= 1em ↑
(1em on left; 1em on right)

Figure 6 is provided to demonstrate some of these features including:
caption justification (\raggedright), caption gap (2.5 ex), caption font size
(\scriptsize), LR figure placement (flushright), abovecaptionskipterm (3),
and a value for \FigureDeadMargin of 1em.

3 Figure and Table “Wrappers”

With boxhandler v1.20, figure and table wrappers have been added. A wrapper is
here defined to mean an item that bounds a figure or table by appearing in the
upper-left and lower-right corners of the figure or table. It could be an iconic image
such as the company logo, a reminder such as “COMPANY PROPRIETARY”,
or some other such delimiter to the figure/table. The relevant commands to use
them are as follows:

\WrapperOn[default wrapper]
\WrapperOff

\Wrapper{custom wrapper}
\def\WrapperTextStyle{text style}

By default, wrappers are turned off in boxhandler. They may be activated
with the command \WrapperOn. The optional argument to \WrapperOn, which
should be used on the initial invocation, specifies the default wrapper. Likewise,
wrappers may be disabled with the command \WrapperOff. When wrappers are
activated, every table and figure subsequently created will be wrapped using the
default wrapper.

If, however, the user would like for a given figure or table to have a custom
wrapper different than the default, the \Wrapper{} command should be used
within the second mandatory argument of the call to \bxtable or \bxfigure.
That is to say, the call to \Wrapper should be included within the argument
where the actual figure or table contents are defined.

8

Here is an example:

\bxfigure[ht]{Widget details for the XMC-7936}%

{\fbox{\hspace{1in}\rule[-.5ex]{3ex}{3ex} \rightarrow%

\rule[-.2ex]{2ex}{2ex}\hspace{1in}}\Wrapper{PROPRIETARY}}%

PROPRIETARY

→

Figure 7. Widget details for the XMC-7936.

PROPRIETARY

Wrapper text (both default and custom) are given a style defined by
\WrapperTextStyle. The default style is small, boldface text, \bf\small.

4 Box and List Deferral/Preemption

4.1 Description of Problem

For those using conditional compilation to create various versions of the same
basic document, the boxhandler package can provide great utility. The package
has been designed to permit the deferral and preemption of certain aspects of the
document, such as figures, tables and lists. With such a capability, one has the
capacity to not only change the appearance of the alternate document version,
but to fundamentally change its layout too. Table 3 provides a simple example of
how a document may be set up for conditional compilation.

In this example, by setting the parameter in the first line of the document to
either \TECHRPT or \MANUSCRIPT, a different collection of setup routines may be
invoked for each particular document style. This works great for such parameters
that affect appearance, but not placement of the LATEX entities. For example,
changing fonts, margins, indents, etc. works fine with the conditional code shown
in Table 3. Even when a particular document class has unique commands not
found in other classes, a converter style file may be created (such as TR2article

in the Table 3 example) to deal rationally with invocations of class-specific features.

Where great difficulty arises is when the different styles desired of a conditional
compilation utilize fundamentally different layouts of the principal document el-
ements, such as figures, tables, and lists. For example, a technical report would
have it’s tables and figures interspersed throughout the document, whereas the
corresponding journal manuscript submission might have tables and figures col-
lected, one per page, at the end of the document. Whereas the report would
have the List of Figures (lof) as part of the report’s front matter, the journal
manuscript might request to have the lof preceding the figures located at the end

9

Table 3. Conditionally compiled LATEX code.

\def\PREPARETYPE{\TECHRPT}% choices: \TECHRPT or \MANUSCRIPT

\newcommand\TECHRPT{% class for ARL organizational tech rpts

% CONDITIONALLY COMPILED CODE FOR TECHRPT DOCUMENTS

\documentclass{arlticle}

}

\newcommand\MANUSCRIPT{% article-ized version of tech rpt.

% CONDITIONALLY COMPILED CODE FOR MANUSCRIPTS

\documentclass[11pt]{article}

\usepackage{TR2article}

% VARIOUS \MANUSCRIPT-SPECIFIC SETUP COMMANDS GO HERE

}

\PREPARETYPE

% LaTeX CODE & DOCUMENT COMMON TO BOTH STYLES FOLLOWS HEREAFTER

of the manuscript. A typical scientific journal manuscript submission would not
include a Table of Contents (toc), and perhaps not a List of Tables (lot) either.

Arranging for such options to unfold from a single input source file is cum-
bersome without a special treatment. The boxhandler style provides routines to
expedite and ease this cumbersome process.

The boxhandler style also conveniently allows for another useful scenario, in
which figure and table data may be kept in a separate file from the document
text, but nonetheless be made to print out with figures and tables appearing in
the proper location in the text. The \nextTable and \nextFigure commands aid
in this approach.

4.2 Deferral and Preemption Commands

For figure and table deferral, and/or list deferral/preemption, the following com-
mands are available, all without arguments:

\holdTables

\holdFigures

\clearTables

\clearFigures

\killlistoftables

\killlistoffigures

\killtableofcontents

\holdlistoftables

\holdlistoffigures

\clearlistoftables

10

\clearlistoffigures

\nextTable[loc]
\nextFigure[loc]

\holdTables and \holdFigures are used to direct that any subsequent in-\holdTables

\holdFigures vocations of \bxtable and \bxfigure merely store, rather than store & print
the table or figure. These \hold... commands would typically be found in the
conditionally compiled code for manuscripts, for example.

While the calculated width of the caption is saved at the time of call to
\bxtable and \bxfigure based upon the boxhandler parameters at the time of
the \bx... call, the caption format (i.e., [no]offset, center/left alignment, caption
justification) is not set until the figure/table is later printed as part of a \clear...

command (the logic here is that the caption style will be consistent through the
course of the document, thus alleviating the need to store this data for each figure
and table).

The one potential pitfall with the use of these commands is the situation when
a citation is made within the caption of a deferred table or figure. In this case,
the citation is numbered based on when the table or figure is finally displayed,
not when it was created. Thus, if \holdTables and/or \holdFigures is used
to prevent the printing of tables and/or figures until the end of the document,
then any unique citation defined in a table or figure caption will receive a higher
citation number than even a citation appearing in the last line of document text.

There is, however, an easy solution to this predicament. That is, when a figure
or table is employed which contains a citation, the main text of the document
should invoke \nocite{key list} to the same reference. This occurance of \nocite
should be placed in the main document (i.e., outside of bxtable or bxfigure) at
the point where the table or figure is actually being invoked. In this manner, the
citation gets added to the .aux file at the proper spot, regardless of when the table
or figure is actually printed out.

\clearTables and \clearFigures directs that any tables or figures that have\clearTables

\clearFigures been stored, but not yet printed, be output at this point. As mentioned above, the
offset, alignment, and justification for captions is set at the time of printing, not at
the time of table or figure creation. The format for presenting tables and figures
to be cleared (i.e., one table/figure per page, vertically centered) can be changed
by renewing the commands \theClearedTable and/or \theClearedFigure. See
the next section on Advanced Use for details.

Note that if tables and figures have not been subject to a \hold... command,
the \clear... commands have no effect, since they affect only those tables and/or
figures which have not already been printed. Thus, these commands would typi-
cally appear in the common document text at the appropriate point where tables
and figures, if previously held, should be printed. Note that, though commands
have not been explicitly provided to kill the printing of figures and tables, this
can be effectively accomplished by putting figures and/or tables on hold, and then
ending the document without having issued a corresponding \clear... command.

11

\killlistoftables, \killlistoffigures and \killtableofcontents di-\killlistoftables

\killlistoffigures

\killtableofcontents

rect that any subsequent calls to print the respective list be ignored and that
the list be discarded. This action cannot later be undone with a \hold... com-
mand. These commands would typically appear in the conditionally compiled
region of the document.

\holdlistoftables and \holdlistoffigures direct that calls to print the\holdlistoftables

\holdlistoffigures particular list cited be deferred until a later invocation of the corresponding
\clear... command. Note that a call to \clearTables and \clearFigures

will also clear the corresponding list first, if it has been subject to a \hold...

command (but not a \kill... command). These \hold... commands would
typically appear in the conditionally compiled region of the document.

\clearlistoftables and \clearlistoffigures clear the cited list (i.e., those\clearlistoftables

\clearlistoffigures lists currently “on hold”). No list will be printed if: the \listoftables or
\listoffigures command hadn’t earlier been invoked; if it had already been
printed out because it hadn’t been subject to a hold; or if the list had previously
been killed. Note: calls to \clearTables or \clearFigures automatically causes
a call to \clearlistoftables or \clearlistoffigures, respectively. Therefore,
these particular calls are only needed explicitly in your LATEX document if it is
desired to clear the list well in advance of the associated tables or figures.

With the deferral and preemption commands now described, we show how
they might be used to complete the multi-mode LATEX document stencil that was
first laid out in Table 3. To see this, refer to Table 4. The document is created
with \bxtable and \bxfigure calls dispersed throughout text, and nominally asks
for the toc, lof, and lot to be printed at the beginning of the document. When
\PREPARETYPE is defined as {\TECHRPT}, this is exactly how the document unfolds.

However, by merely defining \PREPARETYPE as {\MANUSCRIPT}, the toc and
lot will be killed, preempting subsequent invocations. Printing of the lof will
be deferred. As bxtables and bxfigures are invoked, they will be created and
stored, but not printed. At the very end of the document, all the tables will first
be cleared, one per page, vertically centered. The call to \clearFigures will then
clear the lof on a new page, and finally clear all the figures in a similar manner.

With the change of a single line of code, a vastly different document
layout has been achieved!

The deferral commands described to this point have been cast in terms of tools\nextTable

\nextFigure to aid in printing out multiple vastly different versions of a document from a single
source file. With boxhandler v1.10, the commands \nextTable and \nextFigure

have been introduced. These commands, while somewhat similar in function to
\clearTables and \clearFigures, are useful in a completely different regard. In
the case of \nextTable and \nextFigure, only a single table or figure is cleared.
Unlike \clearTables and \clearFigures, the table or figure is not printed on
a page by itself, but inline the document. The optional argument specifies the
location on the page (ht, hb, t, b or p) where the table or figure should appear,
consistent with LATEX convention.

12

Table 4. Conditionally compiled LATEX code with boxhandler package defer-
ral and preemption directives.

\def\PREPARETYPE{\TECHRPT}% choices: \TECHRPT or \MANUSCRIPT

\newcommand\TECHRPT{% class for ARL organizational tech rpts

% CONDITIONALLY COMPILED CODE FOR TECHRPT DOCUMENTS

\documentclass{arlticle}

\usepackage{boxhandler}

}

\newcommand\MANUSCRIPT{% article-ized version of tech rpt.

% CONDITIONALLY COMPILED CODE FOR MANUSCRIPTS

\documentclass[11pt]{article}

\usepackage{TR2article}

\usepackage{boxhandler}

\killtableofcontents

\killlistoftables

\holdlistoffigures

\holdTables

\holdFigures

% VARIOUS \MANUSCRIPT-SPECIFIC SETUP COMMANDS GO HERE

}

\PREPARETYPE

% LaTeX CODE & DOCUMENT COMMON TO BOTH STYLES FOLLOWS HEREAFTER

\begin{document}

\maketitle

\tableofcontents

\listoffigures

\listoftables

...

% DOCUMENT CONTAINING \bxtable AND \bxfigure CALLS GOES HERE.

...

\clearTables

\clearFigures

\end{document}

The unique utility of the \nextTable and \nextFigure commands is in allow-
ing one to define all the document’s figures and tables “up front,” at the beginning
of the document, perhaps even in a seperate file that is \input into the document.
Then, when a table or figure is referred to in the text, all that need be included
in the main document is an occurance of \nextTable or \nextFigure.

In this manner, all the tables and figures can be printed out in the document at
their appropriate location, while logically, the document can be organized during
preparation to keep the figure and table matter separate from the text matter of
the document.

13

If one wishes to incorporate conditional compiliation (as in Table 4) while
simultaneously keeping table and figure definition in a separate file \input at
the beginning of the document, this can be done, too. The tables and figures
would be added after the \begin{document} command and invocation would be
accomplished by way of \nextTable and \nextFigure as described here. However,
in the \MANUSCRIPT preamble (using the nomenclature of Table 4), \nextTable
and \nextFigure would be nullified as:

\renewcommand\nextTable[1][]{}

and
\renewcommand\nextFigure[1][]{}.

In this manner, for the \MANUSCRIPT report type, tables and figures would be made
to not appear until the final invocations of \clearTables and \clearFigures.

5 Advanced Use (DANGER!)

Additionally, there are certain lower level, yet accessible, counters, macros and
lengths, which are intended for advanced use only. It is possible to get into diffi-
culty if not thinking through their use thoroughly. Pitfalls will be laid out, where
known. These accessible hooks into the inner workings of the boxhandler package
include:

Lengths:
\DeadMargin, \CaptionBoxWidth

Counters:
TableIndex, FigureIndex, TableClearedIndex,

FigureClearedIndex, promptTablesFlag, promptFiguresFlag

Macros:
\StoreTable{caption}{boxed object}{wrapper}{wrapper status}
\StoreFigure{caption}{boxed object}{wrapper}{wrapper status}
\SaveCBox{new cmd}{boxed object}
\ReciteTable[loc]{caption}{cmd}{wdth}{wrapper}{wrapper status}
\ReciteFigure[loc]{caption}{cmd}{wdth}{wrapper}{wrapper status}
\theClearedTable[loc]{caption}{cmd}{wdth}{wrapper}{wrapper status}
\theClearedFigure[loc]{caption}{cmd}{wdth}{wrapper}{wrapper status}

To keep track of tables and figures as they are created, the counters TableIndexTableIndex

FigureIndex

TableClearedIndex

FigureClearedIndex

and FigureIndex are used. To keep track of how many tables and figures have
already been printed, TableClearedIndex, and FigureClearedIndex are used.
The appropriate index is incremented whenever a table or figure is created or
cleared. These index counters are also used as part of the naming convention
employed by the \StoreTable and \StoreFigure commands, to be subsequently
described.

The counters promptTablesFlag and promptFiguresFlag are used as binarypromptTablesFlag

promptFiguresFlag switches to determine whether calls to \bxtable and \bxfigure result in the

14

prompt display (1) or deferred display (0) of the table or figure. The \holdTables
and \holdFigures commands change these switches to their ‘0’ state. Any signifi-
cant use of these switches to achieve the printing of latter tables/figures prior to the
clearing of earlier ones will require the rewrite, by the user, of the \clearTables

and \clearFigures commands, since these \clear... macros were written using
a first-in-first-out (FIFO) methodology.

The macros \StoreTable and \StoreFigure use the same form of caption\StoreTable

\StoreFigure and data arguments as \bxtable and \bxfigure, with two additional wrapper
variables added. In fact, the \bx... commands call upon the \Store... macros.
The difference is that the \StoreTable and \StoreFigure macros will save the
boxed object without printing it, regardless of whether a \hold... command
has been issued. The saved information will consist of five pointers necessary to
recreate the table or figure. These pointers will be named according to boxhandler’s
internal naming convention.

At this point, it is worth noting the naming convention of the pointers used
by boxhandler to store the variables for figures and tables. The saved information
resulting from a \StoreTable or \StoreFigure command will consist of a pointer
to a saved box, a pointer to the caption text, a pointer to the calculated width
of the caption box (based on the state of the boxhandler parameters at the time
of the function call), and pointers to the wrapper and a flag indicating whether
wrappers are active for this figure or table.

The counters TableIndex and FigureIndex are used to create a unique part of
these pointer names, in the form of \roman{indexname}. Saved box pointers have
the prefix tbl- or fig-, saved caption pointers have the prefix tblcap- or figcap-
and caption-width pointers have the prefix tblcapwdth- and figcapwdth-. The
wrapper pointer has the prefix tblwrap- and the pointer to flag indicating the
status of wrapper activity is tblwrapstatus-. Thus, for example, the fourth in-
vocation of \bxtable or \StoreTable will create an sbox named \tbliv that is
used to store the boxed (e.g., tabular) data, a pointer \tblcapiv that is used
to store the caption text, a length pointer \tblcapwdthiv that stores the value
of the calculated caption width, a wrapper pointer \tblwrapiv, which stores the
wrapper, and a pointer \tblwrapstatusiv, which stores a ‘T’ or ‘F’ to indicate
whether wrappers are currently active or not. When avoiding creative program-
ming, the pointer index (e.g., ‘iv’ in this example) will correspond to the actual
Table or Figure number (i.e., ‘4’) appearing in the caption ID label. However, it
is wise to remember,

1. when creating tables or figures outside of the boxhandler style;

2. when bypassing the \Store... commands and going straight to the lower
level \SaveCBox command; or

3. when using the \Recite... commands to print multiple occurances of a
box;

15

that the internal numbering of boxhandler tables and figures will likely be out of
syncronization with the Table and Figure counters.

The low-level routine which saves a “captioned box” is called \SaveCBox. As\SaveCBox

its arguments, it follows the form of the LATEX \sbox command: it takes a new
command name and the boxed object as its parameters. This is the routine called
by the \Store... commands with a command argument something like \tbliv

or \figiii, for example. You are, however, free to pass your own command
names to this routine, so as not to conflict with the names autogenerated by
the \Store... commands. Keep in mind that calls to \SaveCBox will not, by
themselves, increment TableIndex or FigureIndex, and will not be tracked by
the \clear... commands.

In addition to saving the boxed object in the specified command bin, the width\DeadMargin

\CaptionBoxWidth of the associated caption is calculated, based upon the prevailing boxhandler pa-
rameters at the time of call. One such parameter that is used to calculate the
caption width, is the dead margin. \SaveCBox, being a low-level routine, is used
for both tables and figures. As such, the appropriate variable to set, in order to
define the dead margin is the generic length \DeadMargin, regardless of whether
the call is to save a figure or a table box. The calculated caption width is stored in
the length variable \CaptionBoxWidth. This length variable is ephemeral, being
updated with each new figure or table generated, and so it is up to the user to
save the value of \CaptionBoxWidth somewhere else if it is to be used to later
define a recited box’s caption width. Likewise, while \SaveCBox does not even
deal with the box’s caption text per se, it is the user’s responsibility to save the
actual caption somewhere, for later recitation.

Reciting stored tables or figures is accomplished by way of \ReciteTable and\ReciteTable

\ReciteFigure \ReciteFigure. As the [optional] first of their four arguments, they take the
location directive for placement on the page (e.g., ht, hb, t, b, or p). Both the
caption and the caption width arguments may be specified directly, or indirectly by
way of a stored string and length variable, respectively. The command argument
to these macros must be the bin for the saved box object that constitutes the
actual table or figure data.

If one desires, the \Recite... commands may be used repeatedly to print a
given table or figure multiple times. However, any \label associated with the
[repeatedly recited] caption will be reassigned to the most recent invocation of the
\Recite... call. Thus, references to the table or figure number by way of a \ref

call are likely to produce an undesired result, if a given table or figure is recited
multiple times.

Finally, two very useful routines to be familiar with are the \theClearedTable\theClearedTable

\theClearedFigure and \theClearedFigure macros. These are the routines which are repeatedly
called by \clearTables and \clearFigures, respectively, to print out all tables
and figures which have been “on hold.” The manner in which boxhandler clears
them is one per page, vertically centered. It is easy to envision applications in
which the method of clearing would take on a different appearance than this. To
change the appearance by which tables and/or figures are cleared, these commands

16

need to be redefined by the user by way of a \renewcommand. For reference, the
\theClearedTable command is defined by boxhandler as:

\newcommand\theClearedTable[6][ht]{

\vspace*{\fill}

\ReciteTable[#1]{#2}{#3}{#4}{#5}{#6}

\vspace*{\fill}

\clearpage

}

As one can see, \theClearedTable is a call to \ReciteTable that is sur-
rounded by the code necessary to place the table recitation at the desired location
upon the page. \theClearedFigure is defined analogously. Modification of this
layout should be straightforward for the user. For example, if it were desired to
have two tables per page during the clearing process, one might use the following
renewal:

\newcounter{toggle} \setcounter{toggle}{0}

\renewcommand\theClearedTable[6][ht]{

\addtocounter{toggle}{1}

\ifnum \arabic{toggle} = 2 \setcounter{toggle}{0} \fi

\ifnum \arabic{toggle} = 1

\ReciteTable[t]{#2}{#3}{#4}{#5}{#6}

\else

\ReciteTable[b]{#2}{#3}{#4}{#5}{#6}

\clearpage

\fi

}

6 Examples

Examples of a number of calls provided in this style are given below, in no partic-
ular order:

\bxtable[t]

{This is a test of nonwrapping caption\label{tb:mytable}}

{

\begin{tabular}{|c|c|c|}

\hline

column 1 data & 2nd column data & and the third column data\\

\hline

\end{tabular}

}

17

\usepackage{graphicx}

\bxfigure[ht]

{Here is an example of a particularly long caption that will

test wrapping}

{\includegraphics[width=3.64in,height=4.30in]{Atest1.eps}}

\relaxCaptionWidth[2in]

\captionStyle{}{c}

\setlength\captionGap{3ex}

\setcounter{abovecaptionskipterm}{10}

\setcounter{belowcaptionskipterm}{0}

\TableFontSize\normalsize

\LRFigurePlacement{flushleft}

\killtableofcontents

\holdFigures

\clearFigures

\newsavebox{\mybox}

\SaveCBox{\mybox}{\framebox(200,100){Ack!}}

\ReciteFigure[ht]{\figcapii}{\figii}{\figcapwdthii}%

{\figwrapii}{\figwrapstatusii}

7 Vestigials

In order to retain backward compatibility with the predecessor to the boxhan-\arltable

\arlfigure dler package, the vestigial commands \arltable and \arlfigure are defined in
this package, and are equivalent to \bxtable and \bxfigure, respectively.

As an historical note, the genesis of the boxhandler package was a requirement
to comply with my organization’s caption style (“offset” style, “left” aligned)
specified for its technical reports. Various piecemeal approaches were out there to
handle it, requiring case-specific decisions on the part of the author, depending on
the specifics of the figure/table box and the caption. boxhandler was intended to
simplify and generalize the approach.

18

The figure/table deferral features of boxhandler were borne of my own laziness.
I just didn’t relish keeping two different versions of the same document up to
date... one for my organization, and the other as a manuscript for possible journal
submission. The \bx... commands provided an easier “hook” through which to
achieve the holding and clearing of boxes than did any attempt to muck with the
underlying Figure and Table environments of LATEX.

8 Acknowledgments/Salutations

That’s it for a description of boxhandler! I would like to thank a number of col-
leagues for their consultive assistance. Several were instrumental in getting me
over early bumps in my LATEX learning curve, including Mike Scheidler, Stephen
Schraml, Brian Krzewinski, and Paul Tanenbaum, all of the USARL. I am particu-
larly grateful to Fred Brundick (also of ARL) for sharing his extensive knowledge
of LATEX with me. He clued me in to the sticky quirks of offset captions, and
shared his methods for dealing with the different cases. He also pointed me in the
right direction for the systematic saving of LATEX box objects, which contributed
to the section of this package dealing with object deferral.

I hope this package provides you some utility. The only thing left is the code
listing itself.

19

boxhandler.sty 9 Code Listing

I’ll try to lay out herein the workings of the boxhandler style package. I apologize
if the code fails in some way to conform to LATEX programming conventions. I am
but an enthusiastic novice.

1 〈∗package〉

pbox This package makes use of the ifthen and pbox style packages to aid in the boxing
of captions.

2 \RequirePackage{ifthen}

3 \usepackage{pbox}

TableIndex

FigureIndex

TableClearedIndex

FigureClearedIndex

We start by defining and initializing the counters that keep track of how many
tables and figures have been created and how many have been cleared (i.e., printed
out).

4 \newcounter{TableIndex} \setcounter{TableIndex}{0}

5 \newcounter{FigureIndex} \setcounter{FigureIndex}{0}

6 \newcounter{TableClearedIndex} \setcounter{TableClearedIndex}{0}

7 \newcounter{FigureClearedIndex} \setcounter{FigureClearedIndex}{0}

\old@makecaption

\oldabovecaptionskip

\oldbelowcaptionskip

Here, we save the prevailing definitions of \@makecaption, \abovecaptionskip
and \belowcaptionskip, so that they can be altered before and restored after
every invocation of \bxtable and \bxfigure.

8 \let\old@makecaption \@makecaption% SAVE PREVAILING \@makecaption STYLE

9 \newlength\oldabovecaptionskip

10 \setlength\oldabovecaptionskip \abovecaptionskip

11 \newlength\oldbelowcaptionskip

12 \setlength\oldbelowcaptionskip \belowcaptionskip

\captionGap Initialize \captionGap to 1ex, which sets the horizontal space between the caption
label and the caption box for offset-style captions.

13 %% \captionGap CAN BE INCREASED TO PLACE MORE SPACE BETWEEN THE CAPTION

14 %% LABEL AND THE ACTUAL CAPTION TEXT.

15 \newlength\captionGap \setlength\captionGap{1ex}

\TableDeadMargin

\FigureDeadMargin

The default values for the dead margin around tables and figures is initialized here.
The value of 0.375em for tables corresponds to what the tabular environment
seems to produce. No presupposition is made on what the dead margin is for the
figure environment, however.

16 %% \TableDeadMargin AND \FigureDeadMargin REFER TO THE TABLE & FIGURE

17 %% MARGIN OF A BOX THAT COUNTS TOWARDS ITS SIZE, BUT IN WHICH NO

18 %% ACTIVE DATA FALLS; DEADMARGIN ASSUMED ON BOTH LEFT & RIGHT SIDE.

19 \newlength\TableDeadMargin \setlength\TableDeadMargin{0.375em}

20 \newlength\FigureDeadMargin \setlength\FigureDeadMargin{0em}

20

abovecaptionskipterm

belowcaptionskipterm

The integer parameters abovecaptionskipterm and belowcaptionskipterm are
initialized here. They will be used to guide the temporarily alteration of
\abovecaptionskip and \belowcaptionskip during invocations of \bxtable and
\bxfigure.

21 %% INITIALIZE \above- AND \belowcaptionskip VALUES; CAN BE RESET

22 %% USED TO SET GAPS ABOVE & BELOW CAPTIONS

23 \newcounter{abovecaptionskipterm} \setcounter{abovecaptionskipterm}{10}

24 \newcounter{belowcaptionskipterm} \setcounter{belowcaptionskipterm}{7}

\@minCaptionBoxWidth

\@minCaptionBoxWidthDefault

\@maxCaptionBoxWidth

\@maxCaptionBoxWidthDefault

The minimum and maximum allowed width defaults for the caption box are defined
here. The variables holding the current values of min/max caption width are also
allocated here. Their values will be set and altered through the use of the macros
\relaxCaptionWidth, \limitCaptionWidth and \constrainCaptionWidth, to
be described later.

25 %% RESET \@minCaptionBoxWidth TO Default VALUE WITH \relaxCaptionWidth

26 %% SET \@minCaptionBoxWidth TO USER VALUE WITH \relaxCaptionWidth[<len>]

27 \newlength\@minCaptionBoxWidth

28 \newlength\@minCaptionBoxWidthDefault

29 \setlength\@minCaptionBoxWidthDefault{1in}

30 %% RESET \@maxCaptionBoxWidth TO Default WITH \limitCaptionWidth

31 %% SET \@maxCaptionBoxWidth WITH \limitCaptionWidth[<len>]

32 \newlength\@maxCaptionBoxWidth

33 \newlength\@maxCaptionBoxWidthDefault

34 \setlength\@maxCaptionBoxWidthDefault{\textwidth}

promptTablesFlag

promptFiguresFlag

\holdTables

\holdFigures

promptTablesFlag and promptFiguresFlag are binary switches to define whether
calls to \bxtable and \bxfigure are cleared (i.e., printed) promptly or merely
stored for later clearing. The change to put them “on hold” is actuated by the
\holdTables and \holdFigures commands, respectively. Because the associated
\clear... commands were written with FIFO logic, no mechanism is provided
to reset the flags to “prompt”, once set to “on hold.” Even so, tables and figures
can be cleared in sub-batches, by issuing a series of \clear... commands at
intermediate points in the document.

35 %% DEFINE promptTablesFlag & PROVIDE ROUTINE TO CHANGE IT FROM

36 %% "PROMPT"(1) TO "ON HOLD"(0)

37 \newcounter{promptTablesFlag} \setcounter{promptTablesFlag}{1}

38 \newcommand\holdTables{\setcounter{promptTablesFlag}{0}}

39 %% SAME FOR promptFiguresFlag

40 \newcounter{promptFiguresFlag} \setcounter{promptFiguresFlag}{1}

41 \newcommand\holdFigures{\setcounter{promptFiguresFlag}{0}}

\CaptionFontSize

\TableFontSize

Default size of font in both captions and tables is, by default, \small. However,
these variables allow those defaults to be reset to the desired font size.

42 %% DEFAULT CaptionFontSize & TableFontSize AS \small; CAN BE RESET

43 \let \CaptionFontSize \small

44 \let \TableFontSize \small

21

\LRTablePlacement

\LRFigurePlacement

These variables set the placement of the table or figure either flushed to the left
or right margin, or else centered between the margins (the default). They can be
reset by the user.

45 %% DEFAULT TABLE & FIGURE LR ALIGNMENT TO center;

46 %% CAN RESET TO flushleft/-right

47 \def \LRTablePlacement {center}

48 \def \LRFigurePlacement {center}

\CaptionJustification The flushing of the actual text within the caption box may be accomplished by
setting \CaptionJustification. When it is defined as {} (the default), the
caption is fully justified (i.e., flushed) within the caption box. It may also be set
to {\raggedleft}, {\raggedright} or {\centering}.

49 %% WITHIN-CAPTION JUSTIFICATION CAN BE SET

50 %% OPTIONS: {}, {\raggedleft}, {\raggedright}, or {\centering}

51 \def\CaptionJustification{} % <---DEFAULT IS FULL JUSTIFICATION

52

\DeadMargin

\CaptionBoxWidth

\@DataBoxWidth

\@DataBoxOffset

\@CaptionBoxOffset

\@captionIDwidth

\@captionWidth

\@DataBoxSurplus

New working variables are defined here. All are @-protected from access ex-
cept for \DeadMargin and \CaptionBoxWidth, which have been made accessible
for so-called “Advanced Use.” \DeadMargin is the low-level variable where the
dead margin of the current figure or table box is specified by the advanced user.
\@DataBoxWidth is the calculated width of the data-box portion of the current
table or figure. \CaptionBoxWidth is the calculated width of the caption box for
the current figure, taking into account the dead margin as well as the min/max
allowed caption widths. The “advanced user” can save this datum for future fig-
ure/table recitation. \@DataBoxOffset is the calculated spacer length that must
be added to both sides of the data box to bring it to the size of the caption
box. It will be zeroed, if the data box width exceeds the caption box width.
\@CaptionBoxOffset is the calculated spacer length that must be added to both
sides of the caption box to bring it to the size of the data box. It will be zeroed,
if the caption box width exceeds the data box width. \@captionIDwidth is used
for offset-style captions, and is the width of the caption ID plus the caption gap
(e.g., the width of “Figure 4. ”). \@captionWidth is, for offset-style captions,
simply \CaptionBoxWidth minus \@captionIDwidth; this value equals the width
of the \parbox which is used for the caption text in offset-style captions. Finally,
\@DataBoxSurplus is the excess of data box width over the caption box width. It
can be positive or negative, depending on whether the data box or caption box is
larger.

53 %% WORKING VARIABLES

54 \newlength\DeadMargin

55 \newlength\@DataBoxWidth

56 \newlength\CaptionBoxWidth

57 \newlength\@DataBoxOffset

58 \newlength\@CaptionBoxOffset

59 \newlength\@captionIDwidth

22

60 \newlength\@captionWidth

61 \newlength\@DataBoxSurplus

62

\WrapperOn

\WrapperOff

\Wrapper

\WrapperTextStyle

Wrappers are identifying text (or icons) that bound figures and tables in the
upper-left and lower-right corners. Initially disabled, \WrapperOn turns wrap-
pers on. The optional argument of \WrapperOn, which should be used on the
first invocation, specifies the default wrapper. Wrappers can be turned off with
\WrapperOff. The default wrapper can be changed with a subsequent invocation
to \WrapperOn.

However, the wrapper for any given figure or table may be individually specified
(without changing the default wrapper) by way of the argument to \Wrapper.
Both the default wrapper as well as one passed as an argument to \Wrapper are
presented with the style given in \WrapperTextStyle, which defaults to small,
bold font, \bf\small. The command \Wrapper, if used, should be placed within
the second mandatory argument of \bxtable and \bxfigure, if a wrapper other
than the default is desired.

63 %% FIGURE & TABLE WRAPPER INITIALIZATIONS

64 \def\wrapper{F}

65 \def\WrapperTextStyle{\bf\small}

66 \def\WrapperTextDefault{DEFAULT WRAPPER}

67 \global\def\WrapperText{\noexpand\WrapperTextStyle\WrapperTextDefault}

68 \newcommand\WrapperOn[1][]{%

69 \def\wrapper{T}%

70 \ifthenelse{\equal{#1}{}}%

71 {}{\def\WrapperTextDefault{\noexpand#1}}%

72 \global\def%

73 \WrapperText{\noexpand\WrapperTextStyle\WrapperTextDefault}%

74 }

75 \newcommand\WrapperOff{\def\wrapper{F}}

76 \newcommand\Wrapper[1]{\global\def%

77 \WrapperText{\noexpand\WrapperTextStyle\noexpand#1}}

78

\bxtable The routine \bxtable will store the specified table. If promptTablesFlag equals
unity, the table will also be immediately cleared using the specified loc parameter.
If \roman{TableIndex} equalled, for example, vii, then the table data would
be stored in the box \tblvii, the caption text would be stored in the pointer
\tblcapvii, and the calculated caption width would be stored in the pointer
\tblcapwdthvii.

79 \newcommand\bxtable[3][t]{%

80 \StoreTable[#1]{#2}{#3}{\WrapperText}{\wrapper}%

81 \ifnum\arabic{promptTablesFlag}=1%

82 \addtocounter{TableClearedIndex}{1}%

83 \def\TableBoxLabel{tbl\roman{TableIndex}}%

84 \def\TableCaptionLabel{tblcap\roman{TableIndex}}%

23

85 \def\TblCaptionWidthLabel{tblcapwdth\roman{TableIndex}}%

86 \def\TableWrapper{tblwrap\roman{TableIndex}}%

87 \def\WrapperStatus{tblwrapstatus\roman{TableIndex}}%

88 \ReciteTable[#1]{\csname\TableCaptionLabel\endcsname}%

89 {\csname\TableBoxLabel\endcsname}%

90 {\csname\TblCaptionWidthLabel\endcsname}%

91 {\csname\TableWrapper\endcsname}%

92 {\csname\WrapperStatus\endcsname}%

93 \fi

94 }

95

\StoreTable \StoreTable calculates the names of the pointers where the table-data, -caption,
and -width will be stored, and calls upon the low-level \SaveCbox routine to
actually save the tabular data and compute the caption width. It finally stores
the caption text itself and the calculated caption width. Note that the optional
first argument, loc, is a dummy argument that is not used here.

96 \newcommand\StoreTable[5][]{%

97 \addtocounter{TableIndex}{1}%

98 \setlength\DeadMargin\TableDeadMargin%

99 \def\TableBoxLabel{tbl\roman{TableIndex}}%

100 \def\TableCaptionLabel{tblcap\roman{TableIndex}}%

101 \def\TblCaptionWidthLabel{tblcapwdth\roman{TableIndex}}%

102 \def\TableWrapper{tblwrap\roman{TableIndex}}%

103 \def\WrapperStatus{tblwrapstatus\roman{TableIndex}}%

104 \expandafter\SaveCBox\csname\TableBoxLabel\endcsname{\TableFontSize#3}%

105 \expandafter\def\csname\TableCaptionLabel\endcsname{#2}%

106 \expandafter\newlength\csname\TblCaptionWidthLabel\endcsname%

107 \expandafter\setlength\csname\TblCaptionWidthLabel\endcsname%

108 \CaptionBoxWidth%

109 \expandafter\edef\csname\TableWrapper\endcsname{#4}%

110 \expandafter\edef\csname\WrapperStatus\endcsname{#5}%

111 %% After storing table, reset wrapper to default value

112 \global\def%

113 \WrapperText{\noexpand\WrapperTextStyle\WrapperTextDefault}%

114 }

115

\ReciteTable The \ReciteTable routine recites a previously stored table, using the pointers
that are provided as arguments. First, the \Table environment is invoked, and the
left/right table-placement environment is opened. The routine then defines new
definitions for \@makecaption, \abovecaptionskip and \belowcaptionskip. It
then uses the provided pointers to set the data-box and caption-box widths, and
calculates the offsets. It recites the box caption (using the caption-box offset,
if needed) and then it recites the tabular-data box (using the data-box offset, if
needed). The original definitions for \@makecaption, \abovecaptionskip and
\belowcaptionskip are restored, the table placement environment is concluded

24

and the table itself is ended.

116 \newcommand\ReciteTable[6][ht]{%

117 \begin{table}[#1]%

118 \begin{\LRTablePlacement}%

119 \let\@makecaption\new@makecaption%

120 \setlength\abovecaptionskip{\arabic{abovecaptionskipterm}\p@}%

121 \setlength\belowcaptionskip{\arabic{belowcaptionskipterm}\p@}%

122 \set@DataBoxWidth{#3}%

123 \setlength\CaptionBoxWidth{#4}%

124 \set@BoxOffsets%

125 \if T#6%

126 \rule{\@DataBoxOffset}{0in}%

127 \makebox[\@DataBoxWidth][l]{#5}%

128 \rule{\@DataBoxOffset}{0in}\\%

129 \fi

130 \rule{\@CaptionBoxOffset}{0em}%

131 \parbox{\CaptionBoxWidth}{\bx@caption{#2}}%

132 \rule{\@CaptionBoxOffset}{0em}%

133 \par%

134 \rule{\@DataBoxOffset}{0in}%

135 \usebox{#3}%

136 \rule{\@DataBoxOffset}{0in}\\%

137 \if T#6%

138 \rule{\@DataBoxOffset}{0in}\\%

139 \makebox[\@DataBoxWidth][r]{#5}%

140 \rule{\@DataBoxOffset}{0in}%

141 \fi

142 \let\@makecaption\old@makecaption%

143 \setlength\abovecaptionskip \oldabovecaptionskip%

144 \setlength\belowcaptionskip \oldbelowcaptionskip%

145 \end{\LRTablePlacement}%

146 \end{table}%

147 }

148

\nextTable This routine will clear a single table, if there are any that have not yet been
printed as a result of a previously invoked command. It assumes FIFO logic. The
optional argument is the location on the page where the table is to be printed,
in accordance with standard LATEX logic. If there are no uncleared tables left to
format, then the command has no effect.

149 \newcommand\nextTable[1][ht]{%

150 \ifnum\arabic{TableClearedIndex}<\arabic{TableIndex}{%

151 \addtocounter{TableClearedIndex}{1}%

152 %% \TableBoxLabel : tbli, tblii, tbliii, tbliv, etc.

153 %% \TableCaptionLabel : tblcapi, tblcapii, tblcapiii, tblcapiv, etc.

154 %% \TblCaptionWidthLabel: tblcapwdthi, tblcapwdthii, tblcapwdthiii,etc.

155 \def\TableBoxLabel{tbl\roman{TableClearedIndex}}%

156 \def\TableCaptionLabel{tblcap\roman{TableClearedIndex}}%

25

157 \def\TblCaptionWidthLabel{tblcapwdth\roman{TableClearedIndex}}%

158 \def\TableWrapper{tblwrap\roman{TableClearedIndex}}%

159 \def\WrapperStatus{tblwrapstatus\roman{TableClearedIndex}}%

160 \ReciteTable[#1]{\csname\TableCaptionLabel\endcsname}%

161 {\csname\TableBoxLabel\endcsname}%

162 {\csname\TblCaptionWidthLabel\endcsname}%

163 {\csname\TableWrapper\endcsname}%

164 {\csname\WrapperStatus\endcsname}%

165 }\fi

166 }

167

\clearTables This routine will clear all stored tables that have not yet been printed. It assumes
a FIFO logic. It starts by clearing the page and clearing the List of Tables (i.e.,
prints the lot if the List of Tables had been put on hold, and subsequently invoked
while “on hold”). If the lot had previously been killed, then \clearlistoftables

will have no effect. Once the lot has been cleared (or not), a loop is set up in which
the names of stored-table pointers are reconstructed, and successively passed to
\theClearedTable which defines the format for clearing and actually calls for the
table to be recited.

168 \newcommand\clearTables{%

169 \clearpage%

170 \clearlistoftables%

171 \clearpage%

172 %%DO UNTIL ALL HELD TABLES ARE CLEARED

173 \whiledo{\arabic{TableClearedIndex}<\arabic{TableIndex}}{%

174 \addtocounter{TableClearedIndex}{1}%

175 %% \TableBoxLabel : tbli, tblii, tbliii, tbliv, etc.

176 %% \TableCaptionLabel : tblcapi, tblcapii, tblcapiii, tblcapiv, etc.

177 %% \TblCaptionWidthLabel: tblcapwdthi, tblcapwdthii, tblcapwdthiii,etc.

178 \def\TableBoxLabel{tbl\roman{TableClearedIndex}}%

179 \def\TableCaptionLabel{tblcap\roman{TableClearedIndex}}%

180 \def\TblCaptionWidthLabel{tblcapwdth\roman{TableClearedIndex}}%

181 \def\TableWrapper{tblwrap\roman{TableClearedIndex}}%

182 \def\WrapperStatus{tblwrapstatus\roman{TableClearedIndex}}%

183 \theClearedTable{\csname\TableCaptionLabel\endcsname}%

184 {\csname\TableBoxLabel\endcsname}%

185 {\csname\TblCaptionWidthLabel\endcsname}%

186 {\csname\TableWrapper\endcsname}%

187 {\csname\WrapperStatus\endcsname}%

188 }%

189 }

190

\theClearedTable Quite simply, this routine prints out each table to be cleared, one per page, ver-
tically centered. It can be renewed by the user if a different clearing format is
desired.

26

191 %% \theClearedTable CAN BE RENEWED IF DIFFERENT OUTPUT FORMAT IS DESIRED

192 \newcommand\theClearedTable[6][ht]{%

193 %% CLEAR THIS TABLE ON A PAGE BY ITSELF, CENTERED VERTICALLY

194 \vspace*{\fill}%

195 \ReciteTable[#1]{#2}{#3}{#4}{#5}{#6}%

196 \vspace*{\fill}%

197 \clearpage%

198 }

199

\bxfigure This routine is analogous to \bxtable in every way. For figures, the pointers
which save the figure use a \fig- prefix, instead of a \tbl- prefix.

200 \newcommand\bxfigure[3][t]{%

201 \StoreFigure[#1]{#2}{#3}{\WrapperText}{\wrapper}%

202 \ifnum\arabic{promptFiguresFlag}=1%

203 \addtocounter{FigureClearedIndex}{1}%

204 \def\FigureBoxLabel{fig\roman{FigureIndex}}%

205 \def\FigureCaptionLabel{figcap\roman{FigureIndex}}%

206 \def\FigCaptionWidthLabel{figcapwdth\roman{FigureIndex}}%

207 \def\FigureWrapper{figwrap\roman{FigureIndex}}%

208 \def\WrapperStatus{figwrapstatus\roman{FigureIndex}}%

209 \ReciteFigure[#1]{\csname\FigureCaptionLabel\endcsname}%

210 {\csname\FigureBoxLabel\endcsname}%

211 {\csname\FigCaptionWidthLabel\endcsname}%

212 {\csname\FigureWrapper\endcsname}%

213 {\csname\WrapperStatus\endcsname}%

214 \fi

215 }

216

\StoreFigure This routine is analogous to \StoreTable in every way.

217 \newcommand\StoreFigure[5][]{%

218 \addtocounter{FigureIndex}{1}%

219 \setlength\DeadMargin\FigureDeadMargin%

220 \def\FigureBoxLabel{fig\roman{FigureIndex}}%

221 \def\FigureCaptionLabel{figcap\roman{FigureIndex}}%

222 \def\FigCaptionWidthLabel{figcapwdth\roman{FigureIndex}}%

223 \def\FigureWrapper{figwrap\roman{FigureIndex}}%

224 \def\WrapperStatus{figwrapstatus\roman{FigureIndex}}%

225 \expandafter\SaveCBox\csname\FigureBoxLabel\endcsname{#3}%

226 \expandafter\def\csname\FigureCaptionLabel\endcsname{#2}%

227 \expandafter\newlength\csname\FigCaptionWidthLabel\endcsname%

228 \expandafter\setlength\csname\FigCaptionWidthLabel\endcsname%

229 \CaptionBoxWidth%

230 \expandafter\edef\csname\FigureWrapper\endcsname{#4}%

231 \expandafter\edef\csname\WrapperStatus\endcsname{#5}%

232 %% After storing figure, reset wrapper to default value

233 \global\def%

27

234 \WrapperText{\noexpand\WrapperTextStyle\WrapperTextDefault}%

235 }

236

\ReciteFigure This routine is analogous to \ReciteTable in every way, except one. In the case
of \ReciteFigure, the figure-data box is output before the caption, not after.

237 \newcommand\ReciteFigure[6][ht]{%

238 \begin{figure}[#1]%

239 \begin{\LRFigurePlacement}%

240 \let\@makecaption\new@makecaption%

241 \setlength\abovecaptionskip{\arabic{abovecaptionskipterm}\p@}%

242 \setlength\belowcaptionskip{\arabic{belowcaptionskipterm}\p@}%

243 \set@DataBoxWidth{#3}%

244 \setlength\CaptionBoxWidth{#4}%

245 \set@BoxOffsets%

246 \if T#6%

247 \rule{\@DataBoxOffset}{0in}%

248 \makebox[\@DataBoxWidth][l]{#5}%

249 \rule{\@DataBoxOffset}{0in}\\%

250 \fi

251 \rule{\@DataBoxOffset}{0in}%

252 \usebox{#3}%

253 \rule{\@DataBoxOffset}{0in}%

254 \par%

255 \rule{\@CaptionBoxOffset}{0em}%

256 \parbox{\CaptionBoxWidth}{\bx@caption{#2}}%

257 \rule{\@CaptionBoxOffset}{0em}%

258 \if T#6%

259 \rule{\@DataBoxOffset}{0in}\\%

260 \makebox[\@DataBoxWidth][r]{#5}%

261 \rule{\@DataBoxOffset}{0in}%

262 \fi

263 \let\@makecaption\old@makecaption%

264 \setlength\abovecaptionskip\oldabovecaptionskip%

265 \setlength\belowcaptionskip\oldbelowcaptionskip%

266 \end{\LRFigurePlacement}%

267 \end{figure}%

268 }

269

\nextFigure This routine is analogous to \nextTable in every way.

270 \newcommand\nextFigure[1][ht]{%

271 \ifnum\arabic{FigureClearedIndex}<\arabic{FigureIndex}{%

272 \addtocounter{FigureClearedIndex}{1}%

273 %% \FigureBoxLabel: : figi, figii, figiii, figiv, etc.

274 %% \FigureCaptionLabel : figcapi, figcapii, figcapiii, figcapiv, etc.

275 %% \FigCaptionWidthLabel: figcapwdthi, figcapwdthii, figcapwdthiii,etc.

276 \def\FigureBoxLabel{fig\roman{FigureClearedIndex}}%

28

277 \def\FigureCaptionLabel{figcap\roman{FigureClearedIndex}}%

278 \def\FigCaptionWidthLabel{figcapwdth\roman{FigureClearedIndex}}%

279 \def\FigureWrapper{figwrap\roman{FigureClearedIndex}}%

280 \def\WrapperStatus{figwrapstatus\roman{FigureClearedIndex}}%

281 \ReciteFigure[#1]{\csname\FigureCaptionLabel\endcsname}%

282 {\csname\FigureBoxLabel\endcsname}%

283 {\csname\FigCaptionWidthLabel\endcsname}%

284 {\csname\FigureWrapper\endcsname}%

285 {\csname\WrapperStatus\endcsname}%

286 }\fi

287 }

288

\clearFigures This routine is analogous to \clearTables in every way.

289 \newcommand\clearFigures{%

290 \clearpage%

291 \clearlistoffigures%

292 \clearpage%

293 %%DO UNTIL ALL HELD FIGURES ARE CLEARED

294 \whiledo{\arabic{FigureClearedIndex}<\arabic{FigureIndex}}{%

295 \addtocounter{FigureClearedIndex}{1}%

296 %% \FigureBoxLabel : figi, figii, figiii, figiv, etc.

297 %% \FigureCaptionLabel : figcapi, figcapii, figcapiii, figcapiv, etc.

298 %% \FigCaptionWidthLabel: figcapwdthi, figcapwdthii, figcapwdthiii,etc.

299 \def\FigureBoxLabel{fig\roman{FigureClearedIndex}}%

300 \def\FigureCaptionLabel{figcap\roman{FigureClearedIndex}}%

301 \def\FigCaptionWidthLabel{figcapwdth\roman{FigureClearedIndex}}%

302 \def\FigureWrapper{figwrap\roman{FigureClearedIndex}}%

303 \def\WrapperStatus{figwrapstatus\roman{FigureClearedIndex}}%

304 \theClearedFigure{\csname\FigureCaptionLabel\endcsname}%

305 {\csname\FigureBoxLabel\endcsname}%

306 {\csname\FigCaptionWidthLabel\endcsname}%

307 {\csname\FigureWrapper\endcsname}%

308 {\csname\WrapperStatus\endcsname}%

309 }%

310 }

311

\theClearedFigure This routine is analogous to \theClearedTable in every way... one figure per
page, vertically centered.

312 %% \theClearedFigure CAN BE RENEWED IF DIFFERENT OUTPUT FORMAT DESIRED

313 \newcommand\theClearedFigure[6][ht]{%

314 %% CLEAR THIS FIGURE ON A PAGE BY ITSELF, CENTERED VERTICALLY

315 \vspace*{\fill}%

316 \ReciteFigure[#1]{#2}{#3}{#4}{#5}{#6}%

317 \vspace*{\fill}%

318 \clearpage%

319 }

29

320

\relaxCaptionWidth This routine sets the minimum permitted caption width. When called with no
argument, it resets the min caption width to its 1 inch default value. If necessary,
the maximum allowed caption width will be bumped up, so as to remain greater
than or equal the minimum allowed caption width.

321 \newcommand\relaxCaptionWidth[1][\@minCaptionBoxWidthDefault]{%

322 \setlength\@minCaptionBoxWidth{#1}%

323 \ifdim \@minCaptionBoxWidth > \@maxCaptionBoxWidth%

324 \setlength\@maxCaptionBoxWidth\@minCaptionBoxWidth%

325 \fi

326 }

327 \relaxCaptionWidth% SET INITIAL \@minCaptionBoxWidth TO DEFAULT VALUE

328

\limitCaptionWidth This routine sets the maximum permitted caption width. When called with no
argument, it resets the max caption width to its default value of \textwidth. If
necessary, the minimum allowed caption width will be reduced, so as to remain
less than or equal the maximum allowed caption width.

329 \newcommand\limitCaptionWidth[1][\@maxCaptionBoxWidthDefault]{%

330 \setlength\@maxCaptionBoxWidth{#1}%

331 \ifdim \@maxCaptionBoxWidth < \@minCaptionBoxWidth%

332 \setlength\@minCaptionBoxWidth\@maxCaptionBoxWidth%

333 \fi

334 }

335 \limitCaptionWidth% SET INITIAL \@maxCaptionBoxWidth TO DEFAULT VALUE

336

\constrainCaptionWidth Straightforward code to set both min- and max-allowed caption widths. Only
twist: if only one argument given, both min- and max-caption widths set to that
value.

337 \newcommand\constrainCaptionWidth[2][-1in]{%

338 \ifdim #1 < 0in%

339 \setlength\@minCaptionBoxWidth{#2}%

340 \setlength\@maxCaptionBoxWidth{#2}%

341 \else

342 \ifdim #1 < #2%

343 \setlength\@minCaptionBoxWidth{#1}%

344 \setlength\@maxCaptionBoxWidth{#2}%

345 \else

346 \setlength\@minCaptionBoxWidth{#2}%

347 \setlength\@maxCaptionBoxWidth{#1}%

348 \fi

349 \fi

350 }

351

30

\SaveCBox Low-level routine to save box data in an sbox. Also, calculates data box width
and associated caption box width.

352 \newcommand\SaveCBox[2]{%

353 \newsavebox{#1}%

354 \sbox{#1}{#2}%

355 \set@BoxWidths{#1}%

356 }

357

\set@BoxWidths Call successive routines to define \@DataBoxWidth and \CaptionBoxWidth.

358 \newcommand\set@BoxWidths[1]{% of DataBox & CaptionBox (-2\DeadMargin)%

359 \set@DataBoxWidth{#1}%

360 \set@CaptionBoxWidth%

361 }

362

\set@DataBoxWidth Calculate and set data-box width.

363 \newcommand\set@DataBoxWidth[1]{%

364 \setlength {\@DataBoxWidth}{\widthof{\usebox{#1}}}%

365 }

366

\set@CaptionBoxWidth Calculate and set caption-box width, subject to constraints of dead margin as well
as caption-box min/max allowable widths.

367 \newcommand\set@CaptionBoxWidth{%

368 \setlength\CaptionBoxWidth\@DataBoxWidth%

369 \addtolength{\CaptionBoxWidth}{-2\DeadMargin}%

370 \ifdim \CaptionBoxWidth < \@minCaptionBoxWidth%

371 \setlength\CaptionBoxWidth\@minCaptionBoxWidth%

372 \fi

373 \ifdim \CaptionBoxWidth > \@maxCaptionBoxWidth%

374 \setlength\CaptionBoxWidth\@maxCaptionBoxWidth%

375 \fi

376 }

377

31

\set@BoxOffsets Calculate \DataBoxSurplus which holds the excess width of the data box with
respect to the associated caption box. Use it to set \@DataBoxOffset and
\@CaptionBoxOffset.

378 \newcommand\set@BoxOffsets{%

379 \setlength\@DataBoxSurplus{\@DataBoxWidth}%

380 \addtolength\@DataBoxSurplus{-\CaptionBoxWidth}%

381 \ifdim \@DataBoxSurplus > 0in%

382 \setlength\@CaptionBoxOffset{0.5\@DataBoxSurplus}%

383 \setlength\@DataBoxOffset{0in}%

384 \else

385 \setlength\@CaptionBoxOffset{0in}%

386 \setlength\@DataBoxOffset{-0.5\@DataBoxSurplus}%

387 \fi

388 }

389

\offset@caption

\nooffset@caption

Define the code for placing offset- and nooffset-captions in the caption box.

390 \long\def\offset@caption#1#2{%

391 \setlength\@captionIDwidth{\widthofpbox{\CaptionFontSize{#1.}}}%

392 \addtolength\@captionIDwidth\captionGap%

393 \setlength\@captionWidth\CaptionBoxWidth%

394 \addtolength\@captionWidth{-\@captionIDwidth}%

395 \CaptionFontSize{#1.}\hfill\parbox[t]{\@captionWidth}%

396 {\CaptionJustification\CaptionFontSize{#2.}}%

397 }

398

399 \long\def\nooffset@caption#1#2{%

400 \CaptionJustification\CaptionFontSize #1.\rule{\captionGap}{0in}#2.%

401 }

402

\shortleft@caption

\shortcenter@caption

\shortright@caption

Define the code for placing short-left, -center, and -right captions in the caption
box.

403 \long\def\shortleft@caption#1#2{%

404 \raggedright\CaptionFontSize #1.\rule{\captionGap}{0in}#2.%

405 }

406

407 \long\def\shortcenter@caption#1#2{%

408 \centering\CaptionFontSize #1.\rule{\captionGap}{0in}#2.%

409 }

410

411 \long\def\shortright@caption#1#2{%

412 \raggedleft\CaptionFontSize #1.\rule{\captionGap}{0in}#2.%

413 }

414

32

\new@makecaption Define the new @makecaption code, which is defined in terms of long- and short-
caption definitions, that can be changed on the fly.

415 \long\def\new@makecaption#1#2{%

416 \vskip\abovecaptionskip%

417 \sbox\@tempboxa{\CaptionFontSize #1.\rule{\captionGap}{0in}#2.}%

418 \ifdim \wd\@tempboxa >\hsize%

419 \long@caption{#1}{#2}%

420 \else

421 \short@caption{#1}{#2}%

422 \fi

423 \vskip\belowcaptionskip%

424 }

425

\captionStyle

\long@caption

\short@caption

Define the user routine \captionStyle, which allows the user to redefine the
captions styles for long and short captions, respectively.

426 \newcommand\captionStyle[2]{%

427 \if o#1\let\long@caption\offset@caption\fi

428 \if n#1\let\long@caption\nooffset@caption\fi

429 \if l#2\let\short@caption\shortleft@caption\fi

430 \if c#2\let\short@caption\shortcenter@caption\fi

431 \if r#2\let\short@caption\shortright@caption\fi

432 }

433

Define the default value for caption style, which is offset-style, left-aligned.

434 %% SET DEFAULT CAPTION STYLE: CAPTION ID OFFSET FOR LONG CAPTIONS,

435 %% SHORT CAPTIONS LEFT ALIGNED

436 \captionStyle{o}{l}

437

\killtableofcontents Kills subsequent calls for the Table of Contents by renewing the command as null.

438 \newcommand\killtableofcontents{%

439 \renewcommand\tableofcontents{}%

440 }

441

lofInvocations

lofprints

\oldlistoffigures

Set up for lof handling, by preparing to count invocations of lof, the number of
times the lof is printed, and by saving prevailing definition of \listoffigures.

442 %%LIST OF FIGURES HANDLING:

443 \newcounter{lofInvocations} \setcounter{lofInvocations}{0}

444 \newcounter{lofPrints} \setcounter{lofPrints}{0}

445 \let\oldlistoffigures\listoffigures

446

33

\killlistoffigures Kills subsequent calls for List of Figures by renewing the command (and redefining
the saved command) as null.

447 \newcommand\killlistoffigures{%

448 \def\oldlistoffigures {}%

449 \renewcommand\listoffigures{}%

450 }

451

\holdlistoffigures To put the lof “on hold,” we merely redefine \listoffigures to increment the
lofInvocations counter.

452 \newcommand\holdlistoffigures{%

453 \renewcommand\listoffigures{\addtocounter{lofInvocations}{1}}%

454 }

455

\clearlistoffigures This routine will clear (i.e., print) the List of Figures the number of times it was
invoked while “on hold” (most likely 0 or 1 time). It does this by incrementing
lofPrints until it reaches a value of lofInvocations.

456 \newcommand\clearlistoffigures{%

457 \whiledo{\arabic{lofPrints} < \arabic{lofInvocations}}{%

458 \addtocounter{lofPrints}{1}%

459 \oldlistoffigures%

460 }%

461 }

462

lotInvocations

lotPrints

\oldlistoftables

\killlistoftables

\holdlistoftables

\clearlistoftables

List of Tables handling is wholly analogous to List of Figures handling just de-
scribed.

463 %%LIST OF TABLES HANDLING:

464 \newcounter{lotInvocations} \setcounter{lotInvocations}{0}

465 \newcounter{lotPrints} \setcounter{lotPrints}{0}

466 \let\oldlistoftables\listoftables

467

468 \newcommand\killlistoftables{%

469 \def\oldlistoftables {}%

470 \renewcommand\listoftables{}%

471 }

472

473 \newcommand\holdlistoftables{%

474 \renewcommand\listoftables{\addtocounter{lotInvocations}{1}}%

475 }

476

477 \newcommand\clearlistoftables{%

478 \whiledo{\arabic{lotPrints} < \arabic{lotInvocations}}{%

479 \addtocounter{lotPrints}{1}%

480 \oldlistoftables%

34

481 }%

482 }

483

\hyperactive Prepare corrections if the hyperref package is being used. Set default cap-
tion treatment in boxhandler to \caption. Define alternate caption treatment
as \hyper@cap. If \hyperactive is invoked, redefine caption treatment as
\hyper@cap. The optional argument to \hyperactive is the downward-shift to
be applied to the caption, relative to the caption label.

484 %% \hyperactive PROVIDES A CORRECTIVE CAPTION SHIFT WHEN USING THE

485 %% hyperref PACKAGE; OPTIONAL ARGUMENT IS SHIFT LENGTH

486 \let\bx@caption\caption

487 \newlength\hyper@shift

488 \newcommand\hyper@cap[1]{\caption{\vspace*{\hyper@shift}#1}}%

489 \newcommand\hyperactive[1][-1.55ex]{%

490 \setlength\hyper@shift{#1}\let\bx@caption\hyper@cap}

491

arltable

arlfigure

To retain backward compatibility to the simpler predecessor of the boxhan-
dler package, the vestigial commands \arltable and \arlfigure are provided.
Their definitions are directly linked to \bxtable and \bxfigure.

492 %% TO RETAIN BACKWARD COMPATIBILITY WITH THE PREDECESSOR TO boxhandler,

493 %% THE FOLLOWING ASSIGNMENTS ARE MADE.

494 \let\arltable\bxtable

495 \let\arlfigure\bxfigure

496

We are done now.

497 〈/package〉

35

