
The basicarith Package, v1.1

Donald P. Goodman III

October 27, 2014

Abstract

The basicarith package provides means for typesetting arithmetic prob-
lems, of whatever operations, in a clean and open fashion, suitable for edu-
cational texts rather than scholarly works. Digits are spaced out, work (such
as carrying, borrowing, and dropping) can be shown visibly, and individual
digits can be styled independently.

Contents

1 Introduction 1

2 Basic Macros 2
2.1 Non-Division Operations . 2
2.2 Long Division . 3

3 Advanced Usage 4

4 Configuration Commands 6

5 Implementation 7

1 Introduction

TEX and LATEX are, of course, justly celebrated for their ability to beautifully
typeset mathematics. However, there are few utilities available for typesetting
the sort of mathematics that we find in primary school textbooks. We can easily
typeset incredibly complex equations, and TEX will put them together perfectly;
but to typeset an example addition problem, showing our work, is quite difficult.
basicarith attempts to fill this need by providing macros for typesetting and
organizing such problems.

It is notable that basic arithmetic is done in several different styles in various
places, though of course the algorithms are typically the same. The author be-
ing an American, basicarith typesets the problems according to the American
custom. Most of these are shared with other English-speaking countries; however,

1

some, particularly long division, will look quite odd to those from other countries.
No option for using these other styles is currently available.

2 Basic Macros

basicarith offers a few basic macros for formulating problems. These must be
divided into two main groups: long division, and other operations. Since the latter
are simpler, we’ll start with those.

2.1 Non-Division Operations

The fundamental macros for this are \opline, \probline, \nextpline, and\opline

\probline

\nextpline

\soluline. The syntax for each is simple; we’ll take them in their order of use.

\soluline \probline {〈width〉} {〈number〉}

Both these arguments are mandatory. Simply put, probline takes first the
total width of the problem you are typesetting; this is equivalent to the longest
line of the problem. So if your longest line is, say, eight digits long, you put “8”
here. The second is the number of the first line of the equation.

\nextpline {〈number〉}

\nextpline just takes the next number of the equation.

\opline {〈operator〉} {〈number〉}

\opline takes two mandatory arguments; first, the operator to be typeset, and
second, the number of the final line. It also prints a “solution line” underneath
itself; this makes it the last line in the problem before we start figuring the answer.
Note that, if you want a mathematical symbol for the operator (say, “×”), you
have to include the dollar signs yourself. This means that any character can be
your operator, not only math characters.

\soluline {〈number〉}

\soluline is designed for the solution of the problem. Functionally this is
equivalent to \nextpline, but semantically it is clearer. Furthermore, it resets
the line counter, so that line styles will be correctly applied in future equations.

There remains only one more basic macro: \noopline.

\noopline {〈number〉}

\noopline is identical to \opline except that it does not print the operator.\noopline

This is useful for typesetting operations that require one or more intermediate
solutions; for example, multiplication by more than one digit. Typically, in the
American style the operator is printed only on the final line of the first solution;

2

subsequent intermediate solutions require a rule above them but no operator on
that rule. \noopline is what produces this.

These are then combined in the way one might expect. For example:

\probline{9}{58193}

\nextpline{54}

\nextpline{4397}

\opline{$+$}{38291374}

\nextpline{38354018}

\noopline{54}

\soluline{38354072}

5 8 1 9 3
5 4

4 3 9 7
+ 3 8 2 9 1 3 7 4

3 8 3 5 4 0 1 8
5 4

3 8 3 5 4 0 7 2

And that’s the essentials of using basicarith for non-long division.

2.2 Long Division

Long division is typically more difficult to typeset than other functions; so
basicarith offers different macros for handling it. The examples below are mean-
ingless (unlike those above, which are actually correct); they are merely meant to
show the macros which are available.

\longdiv {〈length〉} {〈dividend〉} {〈divisor〉}

The \longdiv macro is, obviously, the most important; it typesets the all-\longdiv

important first line of a long division problem. \longdiv takes three arguments,
all mandatory; the first is the length of the dividend in number of digits (it uses
this to calculate the appropriate length of the line over of the dividend); the second
is the dividend itself; and the third is the divisor. It uses a simple close-parenthesis
between the dividend and divisor, scaled to 1.2 times the current font size.

\ldsoluline {〈solution〉} {〈remainder〉}

\ldsoluline typesets the answer. This is a bit tricky, because as mentioned\ldsoluline

before, in American-style long division, the answer is typeset above the question,
not below it; but we don’t know how much space we will need for that answer until
we’ve typeset the first line, containing the dividend, divisor, and close-parenthesis.
So \ldsoluline should be input after the \longdiv command but before any
\nextldlines; otherwise, basicarith won’t be able to place it correctly.

The second argument to \ldsoluline is the remainder; if you don’t want to
typeset a remainder, you still must include this argument, but it can be left blank.

\nextldline {〈cutoff 〉} {〈number〉}

In the American style of long division, intermediate values are placed under-
neath the dividend, while the solution itself is placed above it. \nextldline\nextldline

typesets these intermediate values. It takes two arguments, both mandatory. The

3

first is the number of digits of the dividend that are encompassed by this interme-
diate result (that is, in purely visual terms, the number of digits in the dividend
which will not have a number underneath them); the second is the number itself.

Notice that basicarith does not keep track of how much it must indent sub-
sequent lines when you’re showing your work. This has the benefit that you can
skip steps as you see fit; it has the drawback that you have to tell basicarith
how much each \nextldline must skip ahead in order to get the number properly
placed.

\longdiv{6}{430;932}{983}

\ldsoluline{837;61}{4}

\nextldline{3}{43}

\nextldline{2}{4389}

9 8 3) 4 3 0;9 3 2
8 3 7;6 1 R 4

4 3
4 3 8 9

And this suffices for basic usage of basicarith. However, there are many other
settings available with the package, which we will address in the next section.

3 Advanced Usage

basicarith allows each line of a mathematical problem to be specially styled. For
example, say you are trying to draw particular attention to the subtrahend of a
given problem:

5 4 8

− 2 7
5 2 1

Or for some reason you want to highlight each line of a subtraction problem
differently, perhaps to visually demonstrate which part is which:

5 4 8

− 2 7
5 2 1

This is accomplished using the \linestyle command, which takes two argu-\linestyle

ments: the number of the line of the problem to be styled (starting with 1 at the
top), and the style to be applied to that line.

\linestyle {〈line number〉} {〈style〉}

The style commands can be anything at all; colors, weights, shapes, or any
combination of the above. These commands will typically be confined to the
innermost box (particularly, they will not span \problemboxes), but if you do
need to manually clear all these values back to default (which is no styling at all),
issue the command \clearlinestyles.\clearlinestyles

4

\linestyle{1}{\color{blue}}%

\linestyle{2}{\color{red}}%

\linestyle{3}{\color{green}}%

\probline{4}{548}%

\opline{$-$}{27}%

\soluline{521}%

5 4 8

− 2 7
5 2 1

Digits can also be individually styled by means of the \digstyle command.\digstyle

\digstyle {〈column number〉} {〈style〉}

Note that these are really styling columns, not merely digits; the style will
be applied to every number in that column until either another \digstyle for
that column number is issued or a \cleardigitstyles command is encountered.\cleardigitstyles

(This latter is like \clearlinestyles, and is pretty self-explanatory.)

\linestyle{1}{\color{blue}}%

\linestyle{2}{\color{red}}%

\linestyle{3}{\color{green}}%

\digstyle{3}{\color{black}\itshape}%

\probline{4}{548}%

\opline{$-$}{27}%

\soluline{521}%

2 1;X 4 8

− 2 7
5;2 1

Notice also that \digstyle commands always take precedence over \linestyle
commands, no matter what order they are issued in.

Oftentimes we want to show our work explicitly, including our carrying (in the
case of addition or multiplication) and our borrowing (in the case of subtraction).
We can show this work by using the \carryline macro. \carryline takes two\carryline

arguments, the number of digits you’ll be putting carries over, and the line with
the carries or borrows that you wish to display.

\carryline {〈number of digits〉} {〈carries〉}

\carryline will respect all \linestyle and \digstyle commands, and it does
count as a line for \linestyle purposes.

\carryline{4}{{3}{\strike{18}17}}

\probline{4}{548}%

\opline{$-$}{29}%

\soluline{519}%

3 —1817

5 4 8

− 2 9
5 1 9

The first argument must be the same as that in the \probline that the carries
will be a part of. This is a clunkiness in the interface that I haven’t been able to
resolve.

5

Multiple digits can be put in a single carry place by enclosing them in brackets.
Further, styling can be applied in a limited way within those brackets; most basic
styling, such as italics and boldface, will work, but more complex styling will not.
Experimentally, at the very least soul and ulem styling will not work here. For
this reason, basicarith provides the \strike command, which will strike out a\strike

borrow when another borrow is required. It is used as shown in the example above
(quite erroneously applied there for the sake of example). \strike takes a single
argument, the number to be struck out. It is implemented quite näıvly, and will
consequently only strike out one or two digit numbers.

Oftentimes we want to arrange our equations in the page, and basicarith’s
setup, with each line being a separate \hbox, can sometimes make this difficult. We
therefore have \problembox, which can enclose any number of basicarith state-\problembox

ments and make it easier to position it on the page. For example, a basicarith

equation in a center environment will not be centered, due to some deep TEX
magic that we don’t need to go into here. Wrap the equation up in \problembox,
however, with the basicarith equation as the only element, and it will work just
fine:

3 —1817
5 4 8
− 2 9

5 1 9

4 Configuration Commands

There are a variety of other bits and pieces of basicarith that can be cus-
tomized. The width of solution line is held in the macro \b@solverulewidth.\b@solverulewidth

As implied by the in its name, this is considered an “internal” command,
but with \makeatletter and \makeatother it can still be reset by a user,
to values reasonable or ridiculous. For example, \b@solverulewidth=2pt (or
\setlength{\b@solverulewidth}{2pt}) gives:

4 4
+ 4 4

The longdivision equivalent is \b@longdivlinewidth; setting it equal to 2pt\b@longdivlinewidth

gives:

2 4) 3 2 9 8

Both of these values are the TEX-default 0.4pt unless changed by the user.
For adminstrative reasons, the sizes of problems are limited both in number

of rows and in number of columns. The parameters controlling these things are,
unsurprisingly, \b@maxcols and \b@maxrows. Both of these are set at twenty to\b@maxcols

\b@maxrows

6

begin with, which ought to be more than enough; but they can be changed if
needed.

By default, when a remainder is displayed in a long division problem, it is
prefixed by “R,” in the American custom. If you’d like something different, you
can redefine \b@remaindertext; its contents will be printed instead.\b@remaindertext

When doing long division, sometimes work is shown in a more explicit way. In
addition to writing intermediate solutions beneath the appropriate digits of the
dividend, we often show visibly how digits are “dropped” from the dividend into
those intermediate problems, by drawing an arrow down from those digits to the
appropriate place. With basicarith, we do this by issuing the \showdivwork,\showdivwork

and turn it off with \noshowdivwork. Showing work is turned on by default.\noshowdivwork

\showdivwork

\longdiv{6}{430.932}{983}

\ldsoluline{837.61}{4}

\nextldline{3}{43}

\nextldline{2}{4389}

9 8 3) 4 3 0.9 3 2
8 3 7.6 1 R 4

4 0
6 9
↓

7 3
↓

2 2
↓

These settings can also be set globally for the package at loading time, with
the package options noshowdivwork and showdivwork. The latter is, of course,noshowdivwork

showdivwork the default.
Incidentally, the last of these examples demonstrates another configuration

option: \fractionsymbol. The author is a dozenalist, and dozenalists customarily\fractionsymbol

use a semicolon as a fractional point; but most people are decimalists, and usually
use either a dot or a comma. With basicarith, you can use any symbol you want;
the default is “;”, but by redefining \fractionsymbol, you can get anything else.
The above was typeset with:

\def\fractionsymbol{.}

The width of the box which encloses each digit is controlled by a macro called
\b@widthofdigits; redefining this will result in different size digit boxes. The\b@widthofdigit

following two lines show this macro set at 3ex and 1ex, respectively.

2 4 ; 5 6

24;56
The default for this setting is 2ex. Note that this is a macro, not a dimen;

change it using \def or \renewcommand, not with \setlength.

5 Implementation

We begin by defining the necessary conditional for determining whether long di-
vision work should be shown (that is, whether to draw drop arrows), and then
defining and processing the package options.

7

1 \newif\ifshowdivisionwork % switch for drop arrows

2 \showdivisionworktrue

3 \DeclareOption{noshowdivwork}{\showdivisionworkfalse}

4 \DeclareOption{showdivwork}{\showdivisionworktrue}

5 \ProcessOptions

We move on by defining the many dimensions and counters that are required to
typeset basic arithmetic problems. Most of these are described afterward by a
comment. First, we define those which rarely change; think limitations on the
numbers of rows and columns; in the documentation we call these “configuration
options.”

6 \newdimen\b@solverulewidth % rule under the operator line

7 \b@solverulewidth=0.4pt

8 \newcount\b@maxcols % maximum length of a problem

9 \b@maxcols=20

10 \newcount\b@maxrows % maximum lines of a problem

11 \b@maxrows=20

12 \newdimen\b@longdivlinewidth % width of above

13 \def\fractionsymbol{;}

Next, we define those variables which change frequently; these are the counters
that keep track of which row and column we’re on and things of that nature.

14 \newdimen\b@topdivline % length of the above

15 \newdimen\b@totalprobwid % width of widest line of problem

16 \newdimen\b@digitwid % width of a digit

17 \def\b@widthofdigit{2ex}

18 \newcount\b@colnum % row number of problem

19 \b@colnum=0%

20 \def\specialdigitstyle{} % style for a given digit

21 \def\speciallinestyle{} % style for a given digit

22 \b@longdivlinewidth=0.4pt

23 \newdimen\b@parenfontsize % size of parenthesis in longdiv

24 \newcount\b@linenum % row number of problem

25 \newdimen\b@divisorlen % length of divisor

26 \newdimen\b@divparenlen % width of the paren in ld

27 \newdimen\b@ldrowlen % length to add to b@divisorlen

28 \newdimen\b@fulldivlen % length of divisor + dividend

29 \b@fulldivlen=0pt

30 \newcount\b@charcount % number of chars in an argument

31 \b@charcount=0

32 \newcount\b@loopi % generic loop counter

33 \b@loopi=0

34 \def\b@remaindertext{R} % text for the remainder

35 \newdimen\b@droparrowlen % drop arrow length

36 \b@droparrowlen=0pt

Now we define the macros that are used for counting the number of characters in
various strings; these are adapted from macros by “Florent” at tex-and-stuff.

blogspot.com.

37 \def\gobblechar{\let\char= }

8

tex-and-stuff.blogspot.com
tex-and-stuff.blogspot.com

38 \def\assignthencheck{\afterassignment\checknil\gobblechar}

39 \def\countunlessnil{%

40 \ifx\char\nil \let\next=\relax%

41 \else%

42 \let\next=\auxcountchar%

43 \advance\b@charcount by1%

44 \fi%

45 \ifx\char;\advance\b@charcount by-1\fi%

46 \next%

47 }%

48 \def\auxcountchar{%

49 \afterassignment\countunlessnil\gobblechar%

50 }%

51 \def\countchar#1{\def\xx{#1}\b@charcount=0 \expandafter\auxcountchar\xx\nil}

Now we define some macros for splitting a string into individual characters and
putting them in boxes; these are adapted from David Carlisle’s answer on tex.

stackexchange.com, question 57598.

52 \def\b@expandloop#1{%

53 \hbox{%

54 \b@xloop#1\relax

55 }%

56 }

57 \def\b@xloop#1{%

58 \if#1\fractionsymbol\else\advance\b@colnum by-1\fi%

59 \ifx\relax#1%

60 \else%

61 \if#1\fractionsymbol%

62 \rlap{\hbox to0pt{\hss#1\hss}}%

63 \else%

64 \hbox to\b@digitwid{\hfil{%

65 \csname speciallinestyle\romannumeral\b@linenum\endcsname%

66 \csname specialdigitstyle\romannumeral\b@colnum\endcsname%

67 #1%

68 }\hfil}%

69 \fi%

70 \expandafter\b@xloop%

71 \fi%

72 }

73 \def\b@spaceout#1{%

74 \countchar{#1}%

75 \b@colnum=\b@charcount%

76 \advance\b@colnum by1%

77 \b@expandloop{#1}%

78 }%

Now we define our macros for non-long-division problems.

79 \def\probline#1#2{%

80 \advance\b@linenum by1%

81 \b@digitwid=\b@widthofdigit%

9

tex.stackexchange.com
tex.stackexchange.com

82 \b@totalprobwid=\b@digitwid%

83 \multiply\b@totalprobwid by#1%

84 \hbox to\b@totalprobwid{%

85 \hfil\b@spaceout{#2}%

86 }%

87 }%

88 \def\opline#1#2{%

89 \advance\b@linenum by1%

90 \hbox{%

91 \hbox to\b@digitwid{\hfil#1}%

92 \advance\b@totalprobwid by-\b@digitwid%

93 \hbox to\b@totalprobwid{%

94 \hfil\b@spaceout{#2}%

95 }%

96 }%

97 \vskip0.5ex%

98 \hrule width\b@totalprobwid height\b@solverulewidth%

99 \vskip0.5ex%

100 }%

101 \def\noopline#1{%

102 \opline{}{#1}%

103 }%

104 \def\nextpline#1{%

105 \advance\b@linenum by1%

106 \hbox{%

107 \hbox to\b@totalprobwid{%

108 \hfil\b@spaceout{#1}%

109 }%

110 }%

111 }%

112 \def\soluline#1{%

113 \advance\b@linenum by1%

114 \hbox{%

115 \hbox to\b@totalprobwid{%

116 \hfil\b@spaceout{#1}%

117 }%

118 }%

119 \b@linenum=0%

120 }%

121 \def\carryline#1#2{%

122 {%

123 \advance\b@linenum by1%

124 \b@digitwid=\b@widthofdigit%

125 \b@totalprobwid=\b@digitwid%

126 \multiply\b@totalprobwid by#1%

127 \footnotesize%

128 \hbox to\b@totalprobwid{%

129 \hfil\b@spaceout{#2}%

130 }%

131 \hrule width\b@totalprobwid height0pt%

10

132 \vskip0.4em%

133 }%

134 }

Now we proceed to define the macros for long division.

135 \def\longdiv#1#2#3{%

136 \advance\b@linenum by1%

137 \vskip\baselineskip%

138 \b@digitwid=\b@widthofdigit%

139 \b@topdivline=\b@digitwid%

140 \settowidth{\b@divisorlen}{\b@spaceout{#3}}

141 \b@parenfontsize=\f@size pt%

142 \multiply\b@parenfontsize by12%

143 \divide\b@parenfontsize by10%

144 \settowidth{\b@divparenlen}{%

145 \fontsize{\b@parenfontsize}{\b@parenfontsize}\selectfont)}%

146 \multiply\b@topdivline by#1%

147 \advance\b@topdivline by0.5\b@digitwid%

148 \vskip0.5ex%

149 \vbox{%

150 \hbox{%

151 \hskip\b@divisorlen%

152 \vrule width\b@topdivline height\b@longdivlinewidth%

153 }%

154 \nointerlineskip%

155 \hbox{%

156 \b@spaceout{#3}%

157 \hfil{\fontsize{\b@parenfontsize}{\b@parenfontsize}\selectfont)}%

158 \b@spaceout{#2}%

159 }%

160 }%

161 \advance\b@divisorlen by\b@divparenlen%

162 }%

163 \def\ldsoluline#1#2{%

164 \advance\b@fulldivlen by\b@divisorlen%

165 \advance\b@fulldivlen by\b@topdivline%

166 \advance\b@fulldivlen by-\b@digitwid%

167 \advance\b@fulldivlen by\b@divparenlen%

168 \vskip-2\baselineskip%

169 \hbox to\b@fulldivlen{%

170 \hfil%

171 \b@spaceout{#1}%

172 \if#2\relax\else\rlap{\hskip1em \b@remaindertext{ }#2}\fi%

173 }%

174 \vskip\baselineskip%

175 }%

This is an interesting little trick which gets the width of a box; we use this to
determine the placement of the drop arrows when we’re showing our long division
work.

11

176 \newdimen\b@droparrowwidth

177 \def\getdroparrowwidth{%

178 \setbox\@tempboxa\hbox{\downarrow}%

179 \b@droparrowwidth=\wd\@tempboxa%

180 }%

Now we get back to long division macros (yes, these do take a rather long time).
We start with the macro for subsequent long division lines.

181 \def\nextldline#1#2{%

182 \advance\b@linenum by1%

183 \b@ldrowlen=\b@digitwid%

184 \multiply\b@ldrowlen by#1%

185 \hbox{%

186 \hskip\b@divisorlen%

187 \hskip\b@ldrowlen%

188 \b@spaceout{#2}%

189 \b@droparrowlen=\baselineskip%

190 \ifshowdivisionwork%

191 \ifnum\b@linenum>2%

192 \getdroparrowwidth%

193 \multiply\b@droparrowlen by\b@linenum%

194 \advance\b@droparrowlen by-2\baselineskip%

195 \hskip-0.5\b@digitwid%

196 \vtop{\vskip-\baselineskip\vskip-\b@droparrowlen%

197 \rlap{%

198 \vrule width0.4pt height\b@droparrowlen%

199 \hskip-0.5\b@droparrowwidth{\downarrow}%

200 }

201 }%

202 \fi%

203 \fi%

204 }%

205 }%

Now we move on to the styling macros; this requires a lot of looping and other
weirdities (weirdities for TEX programming, anyway). First we style lines; then
we style columns.

206 \def\linestyle#1#2{%

207 \b@loopi=0%

208 \loop\ifnum\the\b@loopi<\the\b@maxrows%

209 \advance\b@loopi by1%

210 \ifnum#1=\the\b@loopi

211 \expandafter\def\csname speciallinestyle\romannumeral\b@loopi\endcsname{#2}%

212 \fi

213 \repeat

214 }%

215 \def\digstyle#1#2{%

216 \b@loopi=0%

217 \loop\ifnum\the\b@loopi<\the\b@maxcols%

218 \advance\b@loopi by1%

12

219 \ifnum#1=\the\b@loopi

220 \expandafter\def\csname specialdigitstyle\romannumeral\b@loopi\endcsname{#2}%

221 \fi

222 \repeat

223 }%

Now we get our commands to clear the styling; again, first lines, then columns.

224 \def\clearlinestyles{%

225 \b@loopi=0%

226 \loop\ifnum\the\b@loopi<\the\b@maxrows%

227 \advance\b@loopi by1%

228 \expandafter\def\csname speciallinestyle\romannumeral\b@loopi\endcsname{}%

229 \repeat

230 }%

231 \def\cleardigitstyles{%

232 \b@loopi=0%

233 \loop\ifnum\the\b@loopi<\the\b@maxcols%

234 \advance\b@loopi by1%

235 \expandafter\def\csname specialdigitstyle\romannumeral\b@loopi\endcsname{}%

236 \repeat

237 }%

A few miscellanies; a box for binding together problems, so that they can be
positioned on the page more easily; a macro for doing strikethroughts, quite useful
in the carries; and macros for showing or not showing our long division work.

238 \def\problembox#1{%

239 \leavevmode\vbox{#1}%

240 }%

241 \def\strike#1{%

242 {\rlap{\bf---}#1}%

243 }

244 \def\showdivwork{%

245 \showdivisionworktrue%

246 }

247 \def\noshowdivwork{%

248 \showdivisionworkfalse%

249 }

Now, finally, we clear all the digit styles (so that they at least exist), and then
we’re done. Thanks for reading; happy TEXing!

250 \cleardigitstyles

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

B
\b@colnum 8, 9

\b@digitwid 8–12 \b@divisorlen . 8, 11, 12

13

\b@divparenlen . . . 8, 11
\b@droparrowlen . . 8, 12
\b@droparrowwidth . 12
\b@expandloop 9
\b@fulldivlen 8, 11
\b@ldrowlen 8, 12
\b@linenum 8–12
\b@longdivlinewidth

. 8, 11
\b@maxcols . . . 8, 12, 13
\b@maxrows . . . 8, 12, 13
\b@remaindertext . 8, 11
\b@solverulewidth 8, 10
\b@topdivline 8, 11
\b@widthofdigit . . 8–11

C
\carryline 10
\cleardigitstyles . 13
\clearlinestyles . . 13

D
\digstyle 12

F
\fractionsymbol . . 8, 9

L
\ldsoluline 11
\linestyle 12
\longdiv 11

N
\nextldline 12
\nextpline 10
\nointerlineskip . . 11
\noopline 10
\noshowdivwork 13

O
\opline 10

P

\problembox 13

\probline 9

R

\repeat 12, 13

\rlap 9, 11–13

\romannumeral . 9, 12, 13

S

\showdivisionworkfalse

. 8, 13

\showdivisionworktrue

. 8, 13

\showdivwork 13

\soluline 10

\specialdigitstyle . . 8

\speciallinestyle . . 8

\strike 13

14

	Introduction
	Basic Macros
	Non-Division Operations
	Long Division

	Advanced Usage
	Configuration Commands
	Implementation

