
handlecsv

User Manual

Pablo Rodríguez

2017

http://www.handlecsv.tk

http://www.handlecsv.tk

© 2017 Pablo Rodríguez (http://www.handlecsv.tk). Some rights reserved.
This document is released to the public under the Creative Commons Attribution–ShareAlike 4.0 International
license.

http://www.handlecsv.tk
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Dedicated to Hans Hagen for such powerful and
awesome software pieces: ConTEXt and LuaTEX.

ἄλλος μὲν τεκεῖν δυνατὸς τὰ τέχνης,
ἄλλος δὲ κρῖναι τίν᾽ ἔχει μοῖραν βλάβης
τε καὶ ὠφελίας τοῖς μέλλουσι χρῆσθαι

one has the ability to beget arts, but the abil-
ity to judge of their utility or harm belongs

to another

(Plato, Phaedrus, 274E)

Contents

Introduction 9

1 Before Your Start 11
2 Basic Usage 14
3 Conditional Processing 17
4 Loops inside Loops 21
5 List of Loop Commands 23

Conclusions 25

A Some LuaTEX Code Snippets 27
B Single–Document Processing 29

9

Introduction

The handlecsvmodule enables data merging for automatic document creation.
The most common case for automatic document creation is mail merge.

Every user knows that ConTEXt is an awesome typesetting tool. With han_

dlecsv—and the right scripts—, those beatifully typeset documents can be cre-
ated automatically. This enables ordinary computer users to create high–quality
typeset documents with no requirements at all about ConTEXt knowledge.

I have used handlecsv to develop a whole document creation system at my
workplace. Although my employer may want me to keep the details not publicly
available—and I will honor these indications—, myworkmates use this document
creation system each day at work.

No one at work knows that ConTEXt does the actual document generation. In
fact, they only know that the have to enter data using LibreOffice Calc and select
the right options in the script. Not even the guy from technical support knows
exactly what ConTEXt is—which is my fault in explaining. And everyone seems
to be happy with the new system.

The document creation system works underWindows—this is the operative
system we have at work. But if we migrate to Linux, only the Windows–specific
scripts will have to be translated.

The handlecsv module may be used to develop a full document merging
system. This brief manual introduces to its usage.

Typographic Conventions

Italics are used to refer to intellectual works and registered marks. These include
names of corporations, programs or programming languages. Italics may also
emphasize words or expressions.

The monospaced typeface is used for everything that has to be typewritten by
the user. This includes computer commands, program options and source code
in many different formats.

Typewritten inline words will be hyphenated using an underscore instead of
the standard hyphen. Underscore hyphenation aims to avoid confusion. Because
handlecsv, handlecsv and handlecsvwould be three different modules. 1

10

ConTEXt and related programs have special logotypes. This is the reason why
they aren’t typeset in italics.

Code Snippets

Relevant code snippets—which contain more than four lines, or which are too
complex to be typewritten without errors—are offered as comments in the PDF
document. PDF comments enable direct copying and pasting for inmediate test-
ing. 2 If code snippets are copied from text, also unwanted line and page breaks
will be copied too.

Comments for code snippets only work in the electronic version from the PDF
document. The printed version shouldn’t even print the comment icon. The ePub
format cannot include this goodie, but it doesn’t really need it. Code snippets
can be copied directly from text.

Comments

If you find errors in this document or you want to comment anything related to
handlecsv, open an issue at https://github.com/ousia/handlecsv/issues/new.

Acknowledgments

I sincerely thank Jaroslav Hajtmar for the development of the handlecsvmodule.
The composition of this text is a sign of gratitude for his excellent work. I also
thank him for helping me in making the module available on the ConTEXt Suite.
This important step will surely make handlecsvmore known inside the ConTEXt
community.

I want also to thank Hans Hagen for his extraordinary work in the develop-
ment of both ConTEXt and LuaTEX. Without those excellent pieces of software,
digital typesetting would be a much more difficult activity.

https://github.com/ousia/handlecsv/issues/new

11

1 Before Your Start

A Disclaimer

The development of the handlecsvmodule is done by Jaroslav Hajtmar. Pablo
Rodríguez has suggested improvements, but he didn’t contribute any actual code
to handlecsv. He only wrote the documentation. The errors this introductory
manual may contain are only to be attributed to him.

B Requirements

To start using the handlecsvmodule, you need:

• The latest beta from the ConTEXt Suite.

It includes the latest stable version from handlecsv.

• A spreadsheet program that can handle .csv files. 3

C ConTEXt Suite

The first requirement is mandatory. Not only because it includes the module
itself, but because it is the most developed and fixed version from ConTEXt.

The ConTEXt Suite is a portable distribution. So, it may be installed beside
any other TEX distribution 4 without interferences. Installation instructions are
provided at http://wiki.contextgarden.net/ConTeXt_Standalone.

D Spreadsheet Program

The spreadsheet program must be able to read and write .csv files with their
character set enconded in UTF-8. Although they are many spreadsheet programs,
I have tested the following two applications:

• LibreOffice Calc is the one I use at work. Main advantages are multi–plat-
form availability and free licensing.

• Microsoft Excel, but I had only tested once briefly. I remember not knowing
how to specify the character set for the .csv spreadsheet.

http://wiki.contextgarden.net/ConTeXt_Standalone

12

I must warn that I only use Windows at work and I don’t have Microsoft
Excel installed. I recommend that you check the compatibility yourself.

With LibreOffice Calc, you have to set reading and writing options. Import
options should include UTF-8 as character set, semicolon as separator character
and double quote mark as text delimiter. The same settings should be applied
when exporting to .csv format.

E The File Format

The spreadsheet format is a pure text file with values separated by commas. In
fact, .csv stands for “comma–separated values”. But this file format has some
drawbacks when compared to full spreadsheet format.

These limitations are related to the fact that .csv files are simple–text files.
Some of these shortcommings are:

• .csv files contain only a single sheet.

• Special fields are lost when the file is saved. This happens even in the case
that data were correctly saved in the pure–text spreadsheet.

• Formulas may be saved as formulas, but they won’t work with ConTEXt
without recreating them—either as LuaTEX code or as TEXmath expression.

The use of formulas in merged documents isn’t the common case. But they
might come be extremely handy in invoice or budget generation. In that case, the
field with formula should be recreated in ConTEXt using LuaTEX code. 5

Special fields present a similar case. Standard special fields are numbers and
date fiels. LibreOffice Calc automatically converts the values 04109 and 3/5/2015

into 4109 and 03/05/15. The first sample is a postal code from Leipzig and the
saved value would be a wrong postal code. The second value is a date, but you
may require 3/5/15 or even 3.5.2015—when dates are written in German.

The way to solve the invalid postal code is to create a command that adds a
leading zero when the value includes only four digits. The pure TEX code for that
would read: 6

\def\PLZ#1{\ifnum#1<10000 0\fi#1}

In this case, the postal code should be invoked—assuming that postal code
values are located in \cC:

13

\PLZ{\cC}

Converting dates to a standarized format is explained in 2. Date Format Nor-
malization.

14

2 Basic Usage

Although handlecsv merges data, its main usage is mail merging. Of course,
nothing prevents you from using it in other scenarios you may imagine. But the
common examples are from mail merging.

A The First Example

Imagine this basic spreadsheet, which has to be saved as a.csv:

"Name";"Surname";"Birthdate"

"John";"Smith";10/03/02

"Jane";"Amr";03/03/92

You may want to turn this data into the form:

Name Surname was born on Birthdate.

The required code for this output would be:

\usemodule[handlecsv]

\setheader

\opencsvfile{a.csv}

\starttext

\startbuffer[loop]

\cA\ \cB\ was born on \cC.\crlf

\stopbuffer

\doloopforall{\getbuffer[loop]}

\stoptext

B Module Loading

Some general comments on the code:

• \usemodule[handlecsv] is mandatory. Of course, you have to load the
module to be able to use it.

• \setheader ignores the first row for data merging.

handlecsv
"Name";"Surname";"Birthdate"
"John";"Smith";10/03/02
"Jane";"Amr";03/03/92

handlecsv
\usemodule[handlecsv]
\setheader
\opencsvfile{a.csv}

\starttext

\startbuffer[loop]
\cA\ \cB\ was born on \cC.\crlf
\stopbuffer

\doloopforall{\getbuffer[loop]}
\stoptext

15

• \setsep{;}will change the character for cell separation.

Semicolon is the default character. It doesn’t need to be specified.

• \opencsvfile{a.csv} setups the file where data are taken from—a.csv

in this sample.

Avoid using blank spaces in file names. Characters outside the ASCII
range should be avoided. This helps compatibility withWindows systems.

Configuration commands—such as the previous ones—should be placed
before the file loading command. This is required to parse the file after
opening it.

C Column Invocation

There are two ways of invoking column contents in handlecsv:

1. You may use a command with the title from the first row. This is automat-
ically generated by handlecsv. In the previous sample, commands would
be: \Name, \Surname and \Birthdate.

This option only works when the first row contains the column titles. \set_
header has to be enabled. Otherwise, command names won’t be taken
from the title row, but from the first values.

2. Youmayuse a command formedwith the uppercase column letter prefixed
with \c—from “column”. This gives the three commands \cA, \cB and
\cC used in the sample.

I strongly advise to use the second method, because of the following reasons:

• It is easy to invoke a column by a convention—such as \cD—than by its
actual title—which may change from file to file.

I’m not saying that column titles should be avoided. In fact, they are
extremely useful when introducing data in the .csv file.

• If you use titles to invoke columns, you will have to avoid the following
characters:

– Blank spaces.

16

– Any character outside the ASCII range, such as accented characters or
characters outside the Latin script.

In my experience, users feel more confortable with blank spaces and all re-
quired characters in column titles. So, it is easier also to write the title in full form
and use column commands—such as \cC—in the ConTEXt source document.

D Loop Structure

The document automatically created with handlecsvmay be as complex as you
want. You should define the document as you would define any other ConTEXt
source document.

Actual data merge is enabled by looping the document portion where those
data have to change for each output. The output may be a different paragraph or
a different page.

The loop structure is simple. You have to wrap the data to be merged in a
buffer. And then, you have to add a command that actually loops that buffer.
From the previous sample, those two parts read:

\startbuffer[loop]

\cA\ \cB\ was born on \cC.\crlf

\stopbuffer

\doloopforall{\getbuffer[loop]}

The following conventions have to be considered:

• You may use the name you want for the buffer with data.

But the same name should be used in both \startbuffer and \getbuffer.

• This name should not be used for defining or invoking another buffer.

The name match is required to get the right buffer and not another one.

• A cell is considered to be empty when it only contains spaces.

• A row is empty when none of its cells has any content other than spaces.

17

3 Conditional Processing

Automatic document creation may be easily improved with conditionals.

A Basic Conditionals

The most basic ConTEXt conditional for cell content is to check whether it has any
text. These conditionals are two: \doiftext and \doiftextelse. They may be
used as it follows:

\doiftext{\cA}{it has text}

\doiftextelse{\cA}{it has text}{it doesn’t have any text}

There is no \doifnottext, but \doiftextelsewith no positive consequence
may be used. It could read:

\doiftextelse{\cA}{}{it doesn’t have any text}

Another conditional is to check a cell equals a certain value. These conditionals
are: \doif, \doifnot and \doifelse. Usage examples are:

\doif{\cD}{male}{Mr}

\doifnot{\cD}{male}{Ms}

\doifelse{\cD}{female}{Ms}{Mr}

There is an important reminder about string equality: upper and lowercase
letters are different characters. Male and male are different strings. The same way,
F and f aren’t equal. 7

B Conditional Looping

In some cases, you might want to deal with some part of your spreadsheet. This
is when conditional looping comes extremely handy.

Inclusion

Imagine that your file contains a list of customers from Germany, but you only
need to generate documents for the ones residing in Munich. Your final loop
should read:

18

\doloopif{\cD}{==}{München}{\getbuffer[loop]}

The structure of the conditional loop is the following:

\doloopif{value1}{operator}{value2}{action}

1. As in all loops, it has an action to perform when condition is met.

2. The condition checks whether two selected values match the operator
equal, different (non–equal), greater than, less than, equal or greater than,
and equal or less than.

Texts can be checked to be equal or different. Since they are compared
as strings, equality is met only when the same character sequence is com-
pared, as explained before.

Besides a string match, to select or avoid a particular name—for persons
or places—, the most interesting feature is the ability to check whether a
cell is empty or not.

Numerical comparision allows to check whether a value is greater or less
than other, besides being equal or different.

Exclusion

Exclusion is the opposite operation from inclusion. Using it, you could also
generate documents for all customers in the spreadsheet, excluding those ones
from Berlin. The final loop reads:

\doloopif{\cD}{~=}{Berlin}{\getbuffer[loop]}

As you can see, the conditional loop is the similar to the previous one. The
only difference is that the requirement that triggers the loop is that both values
have to be different.

C Nested Conditionals

There may be some cases in which you have to extract the data from different
fields. In this case, nesting conditional loops is extremely useful.

You might want to generate documents for customers in the Austrian federal
state of Vorarlberg. 8 The spreadsheet may contain a column with the state infor-

19

mation. But if it doesn’t, you may extract this information from the postal code
column.

\doloopif{\cC}{>=}{6700}{%

\doloopif{\cC}{<}{7000}{\getbuffer[loop]}}

The postal code numbers for the state of Vorarlberg have values in the range
from 6700 to 6999. To express the range, we need two conditionals. To get the
action triggered, we need to have both conditions met.

1. The first conditional loop checks whether the postal code number is equal
or greater than 6700.

2. The action that this first conditional loop triggers is the second conditional
loop.

3. The second conditional loop checks whether the postal code number is
less than 7000.

4. The second conditional triggers the action, which gets the buffer. Since
the second conditional is nested, the action can be only triggered if and
only if both conditionals are met.

5. Order of conditions in this case is irrelevant. You might check the highest
value first, and then the lowest one.

As in all three conditionals, \getbuffer[loop] should be enclosed as con-
sequence for a condition. In more complex cases, nothing prevents you from
nesting how many conditional loops you may need.

D LuaTEX Deployment

LuaTEX might help you to formulate more complex conditions.

\doloopif

{\ctxlua{if string.len("\cC")==5

and string.sub("\cC",1)=="8" then

context("x") end}{~=}{}

{\getbuffer[loop]}

The approach is different. The double condition for the looping is that the
postal code contains five characters and the first digit is 8. 9 This positive condition

20

has the consequence of getting data from the buffer. The condition is met when
there is text in from the \ctxlua command. If the condition isn’t met, the loop
will continue to next row or the end of the file.

In the previous sample, there are two conditionals. The first or external one is
from ConTEXt, and the second or internal one is in Lua. The second conditional
is double: only if the field \cC is five characters long and the first one is 8, the
expression will output some text. The loop gets the buffer when the second
conditional outputs text, when its result is other than empty.

21

4 Loops inside Loops

The most common case for document merging is one that has a unique loop.
But there may be documents that need loops inside the main loop. Imagine that
you have to add a list of requirements to each addressee of a letter, being that
requirements list different for recipient. Or youmightwant to add different attach-
ments—using the ConTEXt command \attachment—to each single document for
each recipient. 10

The sample I’m going to show is a list of subjects and grades for each student:

\setuppapersize[A6]

\setuppagenumbering[location=]

\usemodule[handlecsv]

\setheader

\startbuffer[notes]

\item \cC: \cD.

\stopbuffer

\startbuffer[text]

This is to certify that \cA\ \cB\ got the following grades:

\startitemize

\getbuffer[notes]\nextrow

\doloopwhile{\cA}{}{\getbuffer[notes]}

\stopitemize

\page

\stopbuffer

\opencsvfile{grades.csv}

\starttext

\doloopif{\cA}{~=}{}{\getbuffer[text]}

\stoptext

There are three loops here, although two loops share the buffer they loop.
Here are the conditions of the previous sample:

1. Colums are: name, surname, subject and grade. 11

2. The main loop is triggered only when the first column (\cA) has text in it.
The student must have a name to generate a certificate.

handlecsv
\setuppapersize[A6]
\setuppagenumbering[location=]
\usemodule[handlecsv]
\setheader

\startbuffer[notes]
 \item \cC: \cD.
\stopbuffer

\startbuffer[text]
This is to certify that \cA\ \cB\ got the following grades:
\startitemize
 \getbuffer[notes]\nextrow
 \doloopwhile{\cA}{}{\getbuffer[notes]}
\stopitemize
\page
\stopbuffer

\opencsvfile{grades.csv}

\starttext
\doloopif{\cA}{~=}{}{\getbuffer[text]}

\stoptext

22

3. After the row with the student name and surname—with a subject and
grade—, there may be other rows with only subject and grade, which
belong to the student name contained in the previous row.

4. A loop is needed to get those lines without name, which are the lines that
only contain the different subjects and grades from the student.

\doloopuntil{\cA}{}{\getbuffer[notes]}would get subject andgrade
from the line where name and surname are contained. But if the next row
includes a new student, that loop would include the subjects and grades
from that next student. After all, the command loops until \cA is empty.

With the data from this sample, it won’t make a difference, since all stu-
dents have more than a single subject. But as a general rule, it is safer not
to invoke a loop when it could be triggered when unintended.

This second loop is triggered while the name is empty—while \cA doesn’t
contain any text or data.

23

5 List of Loop Commands

\doloopforall{action} it loops the action—normally, a buffer—for all non–
empty lines.

\doloopfromto{from}{to}{action} it loops the action from a row number to
another row.

Loops may advance in decreasing order, when {to} is greater than {from}.

\doloopif{value1}{operator}{value2}{action} it loops the action if a con-
dition is met comparing both values.

Basic operators for comparision are: <, >, == 12, ~=, >= and <=.

\doloopifnum{number1}{operator}{number2}{action} it loops the action if
a condition is met comparing both numbers.

It is exactly the same conditional loop as the previous one, but only numbers
are compared. Comparision operators are the same.

\doloopuntil{value1}{value2}{action} it loops the action until the condition
is met—that both values are equal.

The loop is finished when the condition is met.

\doloopwhile{value1}{value2}{action} it loops the actionwhile the condition
is met—that both values are equal.

Contrary to \doloopuntil, this loop is finished when the condition is not met.

\doloopfornext{number}{action} it loops the action for the next {number} of
lines.

With a negative integer, loop goes backwards.

25

Conclusions

handlecsv is an extremely useful module. But utility is not a universal value, it
is inherently related to each particular usage. Because of that, I want to describe
some situations in which it may be used. Other people may find other interesting
uses of handlecsv not considered here.

My basic usage has been generation of office documents. It should be noted
that I wrote the ConTEXt templates. A small team over ten people use them for
their everyday work. Again, standard usage only involves data saving using
LibreOffice Calc and running extremely basic Windows scripts with simple options.

Documents that can be generated automatically from the same data:

• Office letters.
• Envelopes or labels for those letters.
• Return–receipts for all letters.
• Lists of recipients of those letters.

Although I have no experience with this, handlecsv could be used to generate
budgets or invoices. In that case, I think some LuaTEX code may be required. Also
automated .csv conversion from fully–featured spreadsheets would be advised.

27

A Some LuaTEX Code Snippets

1 Adding Missing Zero to Postal Code

This simple code snippet adds a leading zero to postal code. It works in any
country with postal codes with five digits. It only checks whether the command—
such as \cC—contains four characters and adds a leading zero to those digits.

\startluacode

function document.plz(str)

if str:len()==4 then

str = "0" .. str

end

context(str);

end

\stopluacode

\unexpanded\def\PLZ#1%

{\ctxlua{document.plz("#1")}}

It should be invoked as a command for the column with the postal code:

\PLZ{\cC}

Of course, it could be adapted to add a leading zero in postal–code systems
using four digits by replacing str:len()==4with str:len()==3 in the snippet
above. This may be useful for Austria, Norway or Slovakia.

2 Date Format Normalization

The basic date formalization should convert from a generic format—at least, in
LibreOffice Calc to a proper date.

\startluacode

function document.standarddate(str,insep,outsep)

if str:find(insep)==3 and str:find(insep, 4)==6 then

local day = str:sub(1,2)

local month = str:sub(4,5)

local year = tonumber(str:sub(7,8))

if str:len()<9 and year>=50 then year=year+1900 end

handlecsv
\startluacode
function document.plz(str)
 if str:len()==4 then
 str = "0" .. str
 end
 context(str);
end
\stopluacode

\unexpanded\def\PLZ#1%
 {\ctxlua{document.plz("#1")}}

handlecsv
\startluacode
function document.standarddate(str,insep,outsep)
 if str:find(insep)==3 and str:find(insep, 4)==6 then
 local day = str:sub(1,2)
 local month = str:sub(4,5)
 local year = tonumber(str:sub(7,8))
 if str:len()<9 and year>=50 then year=year+1900 end
 if str:len()<9 and year<50 then year=year+2000 end
 context(day..outsep..month..outsep..year)
 end
end
\stopluacode

\unexpanded\def\formatfulldate#1#2#3%
 {\ctxlua{document.formatdate("#1","#2","#3")}}

\def\standarizedate#1{\formatfulldate{#1}{/}{/}}

28

if str:len()<9 and year<50 then year=year+2000 end

context(day..outsep..month..outsep..year)

end

end

\stopluacode

\unexpanded\def\formatfulldate#1#2#3%

{\ctxlua{document.formatdate("#1","#2","#3")}}

\def\standarizedate#1{\formatfulldate{#1}{/}{/}}

The LuaTEX performs the following steps:

1. Date separator is to be met in the third and sixth position.

2. The first two characters before the first date separator are the day.

3. The first two characters after the first date separator are the month.

4. The first two characters after the second date separator are the year.

5. If the year has only two digits, it will be converted simply to a four–digit
format.

6. Year values greater than 50 will belong to the twenty–first century, and
year values equal or less than 50 will belong to the twentieth century.

In that case, date fields should be invoked:

\standarizeddate{\cF}

In some cases, it may be required to add a leading zero to the date 13. But that
is left as an exercise to the reader, since it was explained in the previous section.

29

B Single–Document Processing

When you have to print the output file, it is better to have all pages to be printed in
a single PDF document. To the best of my knowledge, Acrobat requires multiple
documents to be printed individually.

But there may be scenarios where each row in our spreadsheet requires an
individual PDF document. Digitally–signed letters or certificates require single
documentswith no extra content, even if theymay be also printed. More generally,
when a document is going to be consumed in electronic format, it must be single.

Imagine attendance diplomas after participating in a conference. If they are
to be only printed, it is better to have a single file with all diplomas. But if these
diplomas are going to be sent to participants, each document must contain only
one diploma.

In order to get the single processing of multiple files, we need two source files.
The first one should be the template document with contents and layout for the
final document. The second file has to trigger compilation of each individual
document. 14

1 Certificate

A sample minimal certificate may read:

\setuppapersize[A8, landscape]

\setupbodyfont[helvetica, 13.75pt]

\setuppagenumbering[location=]

\setupwhitespace[big]

\usemodule[handlecsv]

\opencsvfile{participants.csv}

\starttext

\startalign[middle]To Whom It Might Concern\stopalign

This is to certify that \cA\ \cB\ completed the course.

\stoptext

This is the standard source, exactly the same as you would made with any
other document using handlecsv. Of course, it may be as complex as you want.

handlecsv
\setuppapersize[A8, landscape]
\setupbodyfont[helvetica, 13.75pt]
\setuppagenumbering[location=]
\setupwhitespace[big]
\usemodule[handlecsv]
\opencsvfile{participants.csv}
\starttext
\startalign[middle]To Whom It Might Concern\stopalign

This is to certify that \cA\ \cB\ completed the course.
\stoptext

30

To get independent PDF documents for each participant 15, the sample should
be saved as certificate.tex.

2 Execution

After the document to be combined is created, you need to create a document
that performs a loop. The loop includes a command that runs ConTEXt to compile
each row in a different file.

\usemodule[handlecsv]

\startbuffer[singlecertificates]

\executesystemcommand{contextjit purgeall

result=certificate\lineno.pdf

arguments="MainLinePointer={\lineno}" certificate.tex}

\stopbuffer

\starttext

\opencsvfile{participants.csv}

\startitemize[n]

\doloopif{\cA}{~=}{}{\getbuffer[singlecertificates]\item \cA}

\stopitemize

\stoptext

This source file uses handlecsv in standard way. It creates a buffer, which is
looped given certain conditions. In this case, that \cA—the participant’s name—
does have actual content. But there are other considerations:

1. The looped buffer is a ConTEXt compilation command.

2. It is essential to rename the output file to avoid being overwritten by next
output file. result=certificate\cA.pdf 16 is also possible. But there
are two issues.

a. If the name contains spaces, they have to be removed. 17

b. If two different persons have the same name, the second generated
certificate would erase the first generated one.

3. Whatmakes the data loop is arguments="MainLinePointer={\lineno}".

Otherwise you may get as many single documents as you need, but all
will have the data from the first row.

handlecsv
\usemodule[handlecsv]

\startbuffer[single-certificates]
\executesystemcommand{contextjit --purgeall --result=certificate-\lineno.pdf --arguments="MainLinePointer={\lineno}" certificate.tex}
\stopbuffer

\starttext
\opencsvfile{participants.csv}
\startitemize[n]
\doloopif{\cA}{~=}{}{\getbuffer[single-certificates]\item \cA}
\stopitemize
\stoptext

31

It is important that you compile this execution document only once, such as
explained below. Otherwise, ConTEXt will generate individual documents as
many times as the execution source is run. This is only a waste of time, since
individual documents are compiled with so many runs as each requires. The
simple file list doesn’t require more than one run to include all generated files.

contextjit purgeall runs=1 executionsource.tex

3 Why contextjit purgeall?

In both previous invocations of ConTEXt, you may have noticed that I suggested
contextjit purgeall source.tex instead of context source.tex. There
are two main reasons for that.

1. contextjit is faster than context. At the time of writing, compiling this
document with contextjit takes about 17 seconds, with context takes
about 20 seconds. 18

2. purgeall removes extra files required from compilation. This migh not
be a wise choice when generating a single file, but I think it is better to
remove them when having multiple files from the same source.

My previous practices have reasons behind. You might want to check them,
to see whether they fit to your task.

4 Better Output File Names

In some cases, you may want to have more descriptive—or simply useful—file
names for the individual PDF documents generated with the method described
in this appendix. You may use Lua to get this.

In my case, I use a small command to remove spaces form the contents of a
field, since Windows didn’t allow me to add spaces to file names.

Another useful goodie was to be able to number the files in order, but adding
leading zeros where necessary. I mean, PDF documents named from certifi_

cate1 to certificate100 are fine for people. But for computers, files have to
named certificate001 to certificate100.

This command adds as many leading zeros as required—based on the total
number of rows: \zeroedlineno. 19Touse it, replace result=certificate\lineno.pdf
with result=certificate\zeroedlineno.pdf.

32

This is useful when you have to print all single documents. Digitally signed
documents require that. To have all of them in paper, youmaymerge into a single
PDF document and print this common document. Of course, this won’t work
with digital signatures, but it won’t be problematic for having the paper version
of these documents. Digital signed documents have to be preserved. This is only
a simple way to print them. 20

33

1 This is the reason why handlecsv is written always with its first letter lowercase. Han_
dlecsv and handlecsv would be two different modules too.

2 Of course, you need a viewer that can handle PDF comments. Besides Acrobat, Evince
and Okular can handle them. SumatraPDF handles PDF comments, but you have to copy
its contents not opening the comment, but displaying the options right–clicking with your
mouse in the comment icon and copying the contents. MuPDF—as far as I know, for
Windows or Linux—cannot copy contents from PDF comments.

3 Of course, you may edit .csv files with a pure text editor, if you insist. But a proper
spreadsheet program will simplify the task.

4 TEX Live, MikTEX , MacTEX or even another version from the ConTEXt Suite itself.

5 Final results may be saved instead of formulas. But in that case, formulas must be
rewritten if the spreadsheet has new data.

6 Command kindly provided by Juan José Torrens from the Spanish mailing list on TEX .
If you’d rather use LuaTEX code, see 1. Adding Missing Zero to Postal Code.

7 Case–changing commands don’t help here: \WORD{HAHA} isn’t equal to \WORD{haha}.

But a bit of LuaTEX code helps the \doifelse command to ignore the case difference:

\def\GoUpper#1{\ctxlua{string.upper("#1")}}

The \doifelse command should be rewritten into:

\doifelse{\GoUpper{\cD}}{\GoUpper{female}}{Ms}{Mr}

Wolfgang Schuster corrected my first wrong definition.

8 It was extremely tricky to find an administrative division for a country in the European
Union that has only one continuous range of postal code numbers. And there might
be exceptions with some places outside Vorarlberg having a postal code number which
belongs to that Austrian federal state.

9 Apostal code numbermay contain four digits, due to automatic removal of leading zeros.
When postal code aren’t required to contain five digits, requesting their first character
to be 8 may lead to include customers from an area in Sachsen in the selection. This is
because their postal codes range between 08000 and 08999.

10 Although this would require using B. Single–Document Processing, the step described in
2. Execution. Otherwise, attachments will be indeed added to the document, but a single
PDF document will contain all attachments and all letters.

11 Contents of grades.csv may be:

"Name";"Surname";"Subject";"Note"

handlecsv
\def\GoUpper#1{\ctxlua{string.upper("#1")}}

handlecsv
\doifelse{\GoUpper{\cD}}{\GoUpper{female}}{Ms}{Mr}

handlecsv
"Name";"Surname";"Subject";"Note"
"Name 1";"Surname 1";"Subject 1";"Note 1"
;;"Subject 2";"Note 2"
;;"Subject 3";"Note 3"
;;"Subject 4";"Note 4"
"Name 2";"Surname 2";"Subject 5";"Note 5"
;;"Subject 6";"Note 6"
;;"Subject 7";"Note 7"
;;"Subject 8";"Note 8"
;;"Subject 9";"Note 9"
"Name 3";"Surname 3";"Subject 10";"Note 10"
;;"Subject 11";"Note 11"
;;"Subject 12";"Note 12"
;;"Subject 13";"Note 13"
;;"Subject 14";"Note 14"
"Name 4";"Surname 4";"Subject 15";"Note 15"
;;"Subject 16";"Note 16"
;;"Subject 17";"Note 17"
;;"Subject 18";"Note 18"
;;"Subject 19";"Note 19"
;;"Subject 20";"Note 20"
;;"Subject 21";"Note 21"
;;"Subject 22";"Note 22"
;;"Subject 23";"Note 23"
;;"Subject 24";"Note 24"
;;"Subject 25";"Note 25"
;;"Subject 26";"Note 26"
"Name 5";"Surname 5";"Subject 27";"Note 27"
;;"Subject 28";"Note 28"
;;"Subject 29";"Note 29"
;;"Subject 30";"Note 30"
;;"Subject 31";"Note 31"
;;"Subject 32";"Note 32"

34

"Name 1";"Surname 1";"Subject 1";"Note 1"

;;"Subject 2";"Note 2"

;;"Subject 3";"Note 3"

;;"Subject 4";"Note 4"

"Name 2";"Surname 2";"Subject 5";"Note 5"

;;"Subject 6";"Note 6"

;;"Subject 7";"Note 7"

;;"Subject 8";"Note 8"

;;"Subject 9";"Note 9"

"Name 3";"Surname 3";"Subject 10";"Note 10"

;;"Subject 11";"Note 11"

;;"Subject 12";"Note 12"

;;"Subject 13";"Note 13"

;;"Subject 14";"Note 14"

"Name 4";"Surname 4";"Subject 15";"Note 15"

;;"Subject 16";"Note 16"

;;"Subject 17";"Note 17"

;;"Subject 18";"Note 18"

;;"Subject 19";"Note 19"

;;"Subject 20";"Note 20"

;;"Subject 21";"Note 21"

;;"Subject 22";"Note 22"

;;"Subject 23";"Note 23"

;;"Subject 24";"Note 24"

;;"Subject 25";"Note 25"

;;"Subject 26";"Note 26"

"Name 5";"Surname 5";"Subject 27";"Note 27"

;;"Subject 28";"Note 28"

;;"Subject 29";"Note 29"

;;"Subject 30";"Note 30"

;;"Subject 31";"Note 31"

;;"Subject 32";"Note 32"

12 For those not familiar with programming, = is not the same as ==.

Single equal sign is used to asign a value to a variable, such as in:

a = 5

name = "John"

Double equal sign is used when checking the equality of two values such as in:

if 5 + 3 == 4 + 4

The single equal sign is to be read “make equal to”, such as a = 5 is read “make a equal
to five”. The double equal sign is to be read “is equal to”, such as if 5 == 2 + 3 is read
“if five is equal to two plus three”.

35

Since we deal with conditions and we are comparing, the use of double equal sign is
mandatory here.

13 LibreOffice Calc removes the leading zeroes in dates. At least, with the Spanish locale.

14 Actually, the loop goes for a single line and ConTEXt renames the resulting file.

15 The contents for participants.csv might be:

"John";"Smith"

"Jane";"Doe"

"Werner";"Müller"

"María";"Rodríguez"

16 File name for output file must always end with the .pdf extension.

17 We can replace blank spaces with underscores with the following command:

\def\NamesWithoutSpaces{%

\ctxlua{string.gsub(thirddata.handlecsv.getcellcontent(1,

thirddata.handlecsv.gCurrentLinePointer), " ", "_")}%

}

In that case, result=certificate\cA.pdf should be renamed to result=certifi_

cate\NamesWithoutSpaces.pdf.

18 Results are a rough average of more than five compilations using each command.

If you think compilation times are too slow, consider that my laptop is already a decade
old. Your times would be much better.

19 To avoid problems with blank lines and wrong line numbers, use \removeemptylines,
right after \opencsvfile.

20 The standard license from Adobe Acrobat doesn’t allow the printing of multiple docu-
ments except individually. The software forces the user to print PDF documents that way.
Merging multiple documents is the only way to have them printed at once.

handlecsv
"John";"Smith"
"Jane";"Doe"
"Werner";"Müller"
"María";"Rodríguez"

handlecsv
\def\NamesWithoutSpaces{%
 \ctxlua{string.gsub(thirddata.handlecsv.getcellcontent(1,
 thirddata.handlecsv.gCurrentLinePointer), " ", "_")}%
}

This document was generated with pandoc (http://pandoc.org/)
and typeset with ConTEXt (http://contextgarden.net/).

TEX Gyre Pagella, GFS Didot and Cousine were
the typefaces deployed for the PDF document.

http://pandoc.org/
http://contextgarden.net/

	[Copyright]
	[Dedication]
	[Epigraph]
	Introduction
	Typographic Conventions
	Code Snippets
	Comments
	Acknowledgments

	1 Before Your Start
	A Disclaimer
	B Requirements
	C ConTeXt Suite
	D Spreadsheet Program
	E The File Format

	2 Basic Usage
	A The First Example
	B Module Loading
	C Column Invocation
	D Loop Structure

	3 Conditional Processing
	A Basic Conditionals
	B Conditional Looping
	Inclusion
	Exclusion

	C Nested Conditionals
	D LuaTeX Deployment

	4 Loops inside Loops
	5 List of Loop Commands
	Conclusions
	A Some LuaTeX Code Snippets
	1 Adding Missing Zero to Postal Code
	2 Date Format Normalization

	B Single–Document Processing
	1 Certificate
	2 Execution
	3 Why contextjit --purgeall?
	4 Better Output File Names

	[Colophon]

