
pst2pdf
Running a PSTricks document with (pdf/xe/lua)latex;

v0.20 — 2020-08-22∗

Herbert Voß
Pablo González L

pst2pdf is a Perl script which isolates all PostScript or PSTricks related parts of the
TEX document, read all postscript, pspicture, psgraph and PSTexample environments and,
extract source code in standalone files and converting them into image format pdf, eps,
jpg, svg or png (default pdf). Create new file with all extracted environments converted
to \includegraphics and runs (pdf/Xe/lua)latex.

Contents

1 Introduction 2

2 License 2

3 Requirements for operation 2

4 How it works 2
4.1 The input file . 3
4.2 Verbatim contents . 3
4.3 Steps process . 5

5 Default extracted environments 7

6 Remove PSTricks code 8

7 Supported image formats 8

8 How to use 8
8.1 Syntax . 8
8.2 Command line interface . 9
8.3 Example of usage . 11

9 Working in another way 11

10 Example files 11

References 12

∗ This file describes a documentation for version 0.20, last revised 2020-08-22.
1

1 Introduction 2

1 Introduction

PSTricks as PostScript related package uses the programming language PostScript for internal cal-
culations. This is an important advantage, because floating point arithmetic is no problem. Nearly
all mathematical calculation can be done when running the DVI-file with Ghostscript. However,
creating a PDF file in a direct way with pdflatex is not possible. pdflatex cannot understand the
PostScript related stuff.

Instead of running pdflatex one can use the script pst2pdf, it extracts all PSTricks related code into
single documents with the same preamble as the original main document.

The pst2pdf script runs document, extract source code for all PSTricks as PostScript related parts, clips
all whitespace around the image and creates a .pdf images of the PSTricks related code.

In a last run which is the pdflatex the PSTricks code in the main document is replaced by the created
images.

2 License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, butWITHOUTANYWARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

3 Requirements for operation

For the complete operation of pst2pdf you need to have a modern TEX distribution such as TEX Live
or MiKTEX, the packages preview[3], pst-pdf[4], graphicx[6] and grfext[5], have a version equal to
or greater than 5.28 of perl, a version equal to or greater than 9.24 of Ghostscript, a version equal to or
greater than 1.40 of pdfcrop and have a version equal to or greater than 0.52 of poppler-utils.

The distribution of TEX Live 2020 for Windows includes pst2pdf and all requirements, MiKTEX users
must install the appropriate software for full operation.

The script auto detects the Ghostscript, but not poppler-utils. You should keep this inmind if you are
using the script directly and not the version provided in your TEX distribution.

The script has been tested on Windows (v10) and Linux (fedora 32) using Ghostscript v9.52, poppler-utils
v0.84, perl v5.30 and the standard classes offers by LATEX: book, report, article and letter.

4 How it works

It is important to have a general idea of how the “extraction and conversion” process works and the
requirements that must be fulfilled so that everything works correctly, for this we must be clear
about some concepts related to how to work with the 〈input file〉, the 〈verbatim content〉 and the
〈steps process〉.

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.fsf.org/
https://www.gnu.org/licenses/gpl-3.0.html

4 How it works 3

4.1 The input file

The 〈input file〉 must comply with certain characteristics in order to be processed, the content at the
beginning and at the end of the 〈input file〉 is treated in a special way, before \documentclass and
after \end{document} can go any type of content, internally the script will “split” the 〈input file〉 at
this points.

If the 〈input file〉 contains files using \input{〈file〉} or \include{〈file〉} these will not be processed,
from the side of the script they only represent lines within the file, if you want them to be processed
it is better to use the latexpand1 first and then process the file.

Like \input{〈file〉} or \include{〈file〉}, blank lines, vertical spaces and tab characters are treated liter-
ally, for the script the 〈input file〉 is just a set of characters, as if it was a simple text file. It is advisable
to format the source code 〈input file〉 using utilities such as chktex2 and latexindent3, especially if
you want to extract the source code of the environments.

Both \thispagestyle{〈style〉} and \pagestyle{〈style〉} are treated in a special way by the script, if they
do not appear in the preamble then \pagestyle{〈empty〉} will be added and if they are present and
{〈style〉} is different from {〈empty〉} this will be replaced by {〈empty〉}.

This is necessary for the image creation process, it does not affect the 〈output file〉, but it does affect
the standalone files. For the script the process of dividing the 〈input file〉 into four parts and then
processing them:

1 % Part One: Everything before \documentclass
2 \documentclass{article}
3 % Part two: Everything between \documentclass and \begin{document}
4 \begin{document}
5 % Part three: : Everything between \begin{document} and \end{document}
6 \end{document}
7 % Part Four: Everything after \end{document}

If for some reason you have an environment filecontens before \documentclass or in the preamble of
the 〈input file〉 that contains a sub-document or environment youwant to extract, the script will ignore
them. Similarly, the content after \end{document} is ignored in the extraction process.

4.2 Verbatim contents

One of the greatest capabilities of this script is to “skip” the complications that 〈verbatim content〉
produces with the extraction of environments using tools outside the “TEX world”. In order to “skip”
the complications, the 〈verbatim content〉 is classified into three types:

• Verbatim in line.
• Verbatim standard.
• Verbatim write.

Verbatim in line

The small pieces of code written using a “verbatim macro” are considered 〈verbatim in line〉, such as
\verb|〈code〉| or \verb*|〈code〉| or \macro{〈code〉} or \macro[〈opts〉]{〈code〉}.

Most “verbatim macro” provide by packages minted, fancyvrb and listings have been tested and are
fully supported. They are automatically detected the verbatim macro (including * argument) gener-
ates by \newmint and \newmintinline and the following list:
• \mint
• \spverb
• \qverb
• \fverb

• \verb
• \Verb
• \lstinline
• \pyginline

• \pygment
• \Scontents
• \tcboxverb
• \mintinline

1 https://www.ctan.org/pkg/latexpand
2 https://www.ctan.org/pkg/chktex
3 https://www.ctan.org/pkg/latexindent

https://www.ctan.org/pkg/latexpand
https://www.ctan.org/pkg/chktex
https://www.ctan.org/pkg/latexindent

4 How it works 4

Some packages define abbreviated versions for “verbatimmacro” as \DefineShortVerb, \lstMakeShortInline
and \MakeSpecialShortVerb, will be detected automatically if are declared explicitly in 〈input file〉.

The following consideration should be kept in mind for some packages that use abbreviations for
verbatim macros, such as shortvrb or doc for example in which there is no explicit \macro in the
document by means of which the abbreviated form can be detected, for automatic detection need to
find \DefineShortVerb explicitly to process it correctly. The solution is quite simple, just add in 〈input
file〉:
\UndefineShortVerb{\|}
\DefineShortVerb{\|}

depending on the package you are using. If your “verbatim macro” is not supported by default or can
not detect, use the options described in 8.2.

Verbatim standard

These are the “classic” environments for “writing code” are considered 〈verbatim standard〉, such as
verbatim and lstlisting environments. The following list (including * argument) is considered as
〈verbatim standard〉 environments:

• Example
• CenterExample
• SideBySideExample
• PCenterExample
• PSideBySideExample
• verbatim
• Verbatim
• BVerbatim
• LVerbatim

• SaveVerbatim
• PSTcode
• LTXexample
• tcblisting
• spverbatim
• minted
• listing
• lstlisting
• alltt

• comment
• chklisting
• verbatimtab
• listingcont
• boxedverbatim
• demo
• sourcecode
• xcomment
• pygmented

• pyglist
• program
• programl
• programL
• programs
• programf
• programsc
• programt

They are automatically detected 〈verbatim standard〉 environments (including * argument) generates
by commands:

• \DefineVerbatimEnvironment
• \NewListingEnvironment
• \DeclareTCBListing
• \ProvideTCBListing
• \lstnewenvironment
• \newtabverbatim
• \specialcomment

• \includecomment
• \newtcblisting
• \NewTCBListing
• \newverbatim
• \NewProgram
• \newminted

If any of the 〈verbatim standard〉 environments is not supported by default or can not detected, you
can use the options described in 8.2.

Verbatim write

Some environments have the ability to write “external files” or “store content” in memory, these
environments are considered 〈verbatim write〉, such as scontents, filecontents or VerbatimOut en-
vironments. The following list is considered (including * argument) as 〈verbatim write〉 environ-
ments:

• scontents
• filecontents
• tcboutputlisting
• tcbexternal

• tcbwritetmp
• extcolorbox
• extikzpicture
• VerbatimOut

• verbatimwrite
• filecontentsdef
• filecontentshere
• filecontentsdefmacro

• filecontentsdefstarred
• filecontentsgdef
• filecontentsdefmacro
• filecontentsgdefmacro

They are automatically detected 〈verbatim write〉 (including * argument) environments generates by
commands:

• \renewtcbexternalizetcolorbox

4 How it works 5

• \renewtcbexternalizeenvironment
• \newtcbexternalizeenvironment
• \newtcbexternalizetcolorbox
• \newenvsc

If any of the 〈verbatim write〉 environments is not supported by default or can not detected, you can
use the options described in 8.2.

4.3 Steps process

For creation of the image formats, extraction of source code of environments and creation of an 〈out-
put file〉, pst2pdf need a various steps. Let’s assume that the 〈input file〉 is test.tex, 〈output file〉
is test-pdf.tex, the working directory are “./”, the directory for images are ./images, the tempo-
rary directory is /tmp and we want to generate images in pdf format and 〈standalone〉 files for all
environments extracted.

We will use the following code as test.tex:

1 % Some commented lines at begin file
2 \documentclass{article}
3 \usepackage{pstricks}
4 \begin{document}
5 Some text
6 \begin{pspicture}
7 Some code
8 \end{pspicture}
9 Always use \verb|\begin{pspicture}| and \verb|\end{pspicture}| to open
10 and close environment
11 \begin{pspicture}
12 Some code
13 \end{pspicture}
14 Some text
15 \begin{verbatim}
16 \begin{pspicture}
17 Some code
18 \end{pspicture}
19 \end{verbatim}
20 Some text
21 \end{document}
22 Some lines that will be ignored by the script

Validating Options

The first step is read and validated [〈options〉] from the command line, verifying that test.tex con-
tains some environment to extract, check the directory ./images if it doesn’t exist create it and create
a temporary directory /tmp/hG45uVklv9.

The entire test.texfile is loaded intomemory and “split” to start the extraction process.

Comment and ignore

In the second step, once the file test.tex is loaded and divided in memory, proceeds (in general
terms) as follows:

Search the words \begin{ and \end{ in verbatim standard, verbatim write, verbatim in
line and commented lines, if it finds them, converts to \BEGIN{ and \END{, then places all
code to extract inside the \begin{preview} …\end{preview}.

At this point “all” the code youwant to extract is inside \begin{preview}…\end{preview}.

4 How it works 6

Creating standalone files and extracting

In the third step, the script generate 〈standalone〉 files: test-fig-1.tex, test-fig-2.tex, … and saved
in ./images then proceed in two ways according to the [〈options〉] passed to generate a temporary
file with a random number (1981 for example):

1. If script is call without --noprew options, the following lines will be added at the beginning of the
test.tex (in memory):

\PassOptionsToPackage{inactive}{pst-pdf}%
\AtBeginDocument{%
\RequirePackage[inactive]{pst-pdf}%
\RequirePackage[active,tightpage]{preview}%
\renewcommand\PreviewBbAdjust{-60pt -60pt 60pt 60pt}}%
% rest of input file

The different parts of the file read inmemory are joined and save in a temporary file test-fig-1981.tex
in ./. This file will contain all the environments for extraction between \begin{preview}…\end{
preview} along with the rest of the document. If the document contains images, these must be in
the formats supported by the engine selected to process the 〈input file〉.

2. If script is call with --noprew options, the \begin{preview}…\end{preview} lines are only used as
delimiters for extracting the content without using the package preview, the following lines will
be added at the beginning of the test.tex (in memory):

\PassOptionsToPackage{inactive}{pst-pdf}%
\AtBeginDocument{%
\RequirePackage[inactive]{pst-pdf}}%
% only environments extracted

Then it is joined with all extracted environments separated by \newpage and saved in a temporary
file test-fig-1981.tex in “./”.

If --norun is passed, the temporary file test-fig-1981.tex is renamed to test-fig-all.tex and moved
to ./images.

Generate image formats

In the fourth step, the script generating the file test-fig-1981.pdfwith all code extracted and croping,
running:

[user@machine ~:]$ 〈compiler〉 -no-shell-escape -interaction=nonstopmode -recorder test-fig-1981.tex
[user@machine ~:]$ pdfcrop --margins 0 test-fig-1981.pdf test-fig-1981.pdf

Now move test-fig-1981.pdf to /tmp/hG45uVklv9 and rename to test-fig-all.pdf, generate image
files test-fig-1.pdf and test-fig-2.pdf and copy to ./images, if the image files exist, they will be
rewritten each time you run the script. The file test-fig-1981.tex is moved to the ./images and
rename to test-fig-all.tex.

Note the options passed to 〈compiler〉 always use -no-shell-escape and -recorder, to generate
the .fls file which is used to delete temporary files and directories after the process is completed.
The --shell option activates -shell-escape for compatibility with packages such as minted or oth-
ers.

Create output file

In the fifth step, the script creates the output file test-pdf.tex converting all extracted code to
\includegraphics, remove all PSTricks packages and content betwen %CleanPST ... %CleanPST, then
adding the following lines at end of preamble:

1 \usepackage{graphicx}
2 \graphicspath{{images/}}
3 \usepackage{grfext}
4 \PrependGraphicsExtensions*{.pdf}

5 Default extracted environments 7

The script will try to detect whether the graphicx package and the \graphicspath command are in the
preamble of the 〈output file〉. If it is not possible to find it, it will read the .log file generated by the
temporary file. Once the detection is complete, the package grfext and \PrependGraphicsExtensions*
will be added at the end of the preamble, then proceed to run:

[user@machine ~:]$ 〈compiler〉 -recorder -shell-escape test-pdf.tex

generating the file test-pdf.pdf.

Clean temporary files and dirs

In the sixth step, the script read the files test-fig-1981.fls and test-out.fls, extract the information
from the temporary files and dirs generated in the process in “./” and then delete them together with
the directory /tmp/hG45uVklv9.

Finally the output file test-pdf.tex looks like this:

1 % some commented lines at begin document
2 \documentclass{article}
3 \usepackage{graphicx}
4 \graphicspath{{images/}}
5 \usepackage{grfext}
6 \PrependGraphicsExtensions*{.pdf}
7 \begin{document}
8 Some text
9 \includegraphics[scale=1]{test-fig-1}
10 Always use \verb|\begin{pspicture}| and \verb|\end{pspicture}| to open
11 and close environment
12 \includegraphics[scale=1]{test-fig-2}
13 Some text
14 \begin{verbatim}
15 \begin{pspicture}
16 Some code
17 \end{pspicture}
18 \end{verbatim}
19 Some text
20 \end{document}

5 Default extracted environments

pst2pdf support fourth environments for extraction. Internally the script converts all environments
to extract in preview environments. Is better comment this package in preamble unless the option
--noprew is used.

Environment provide by pst-pdf[4], auto-pst-pdf[7] and auto-pst-pdf-lua[13] packages. Since the\begin{postscript}
〈env content〉

\end{postscript}
pst-pdf, auto-pst-pdf and auto-pst-pdf-lua packages internally use the preview package, is better
comment this in preamble. Only the content of this environment is extracted and “not” the envi-
ronment itself when using the --srcenv option. The postscript environment should always be used,
when there is some code before a pspicture environment or for some code which is not inside of a
pspicture environment.

Environment provide by pstricks[15] package. The plain TEX syntax \pspicture ... \endpspicture\begin{pspicture}
〈env content〉

\end{pspicture}
its converted to LATEX syntax \begin{pspicture} ... \end{pspicture} if not within the PSTexample or
postscript environments.

Environment provide by pst-plot[16] package. The plain TEX syntax \psgraph ... \endpsgraph its\begin{psgraph}
〈env content〉
\end{psgraph}

converted to LATEX syntax \begin{psgraph} ... \end{psgraph} if notwithin the PSTexample or postscript
environments.

Environment provide by pst-exa[8] package. The script automatically detects the \begin{PSTexample}\begin{PSTexample}
〈env content〉

\end{PSTexample}
...\end{PSTexample} environments and processes them as separately compiled files. The user should
have loaded the package with [swpl] or [tcb] option.

6 Remove PSTricks code 8

6 Remove PSTricks code

By design, the script remove all PSTricks packages in preamble of 〈output file〉, if you need delete
other PSTricks code in preamble use:

All content betwen %CleanPST ... %CleanPST are deleted in preamble of the 〈output file〉. This lines can%CleanPST
〈code〉

%CleanPST
not be nested and should be at the beginning of the line and in separate lines.

7 Supported image formats

The ⟨image formats⟩ generated by the pst2pdf using Ghostscript and poppler-utils are the following
command lines:

The image format generated using Ghostscript. The line executed by the system is:pdf

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress

The image format generated using pdftoeps. The line executed by the system is:eps

[user@machine ~:]$ pdftops -q -eps

The image format generated using Ghostscript. The line executed by the system is:png

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=pngalpha -r150

The image format generated using Ghostscript. The line executed by the system is:jpg

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=jpeg -r150 -dJPEGQ=100 \
-dGraphicsAlphaBits=4 -dTextAlphaBits=4

The image format generated using pdftoppm. The line executed by the system is:ppm

[user@machine ~:]$ pdftoppm -q -r 150

The image format generated using Ghostscript. The line executed by the system is:tiff

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=tiff32nc -r150

The image format generated using pdftocairo. The line executed by the system is:svg

[user@machine ~:]$ pdftocairo -q -r 150

The image format generated using Ghostscript. The line executed by the system is:bmp

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=bmp32b -r150

8 How to use

8.1 Syntax

The syntax for pst2pdf is simple, if your use the version provided in your TEX distribution:

[user@machine ~:]$ pst2pdf [〈options〉] 〈input file〉

or

[user@machine ~:]$ pst2pdf 〈input file〉 [〈options〉]

If the development version is used:

[user@machine ~:]$ perl pst2pdf [〈options〉] 〈input file〉

8 How to use 9

The extension valid for 〈input file〉 are .tex or .ltx, relative or absolute paths for files and directories
is not supported. If used without [〈options〉] the extracted environments are converted to pdf image
format and saved in the ./images directory using latex»dvips»ps2pdf and preview package for process
〈input file〉 and pdflatex for compiler 〈output file〉.

8.2 Command line interface

The script provides a command line interface with short - and long – option, they may be given before
the name of the 〈input file〉, the order of specifying the options is not significant. Options that accept
a 〈value〉 require either a blank space ␣ or = between the option and the 〈value〉. Some short options
can be bundling.

〈bolean〉 (default: off)-h,--help

Display a command line help and exit.

〈bolean〉 (default: off)-l,--log

Write a pst2pdf.log file with all process information.

〈bolean〉 (default: off)-v,--version

Display the current version (0.20) and exit.

〈bolean〉 (default: off)-V,--verbose

Show verbose information of process in terminal.

〈integer〉 (default: 150)-d,--dpi

Dots per inch for images files. Values are positive integers less than or equal to 2500.

〈bolean〉 (default: off)-t,--tif

Create a .tif images files using Ghostscript.

〈bolean〉 (default: off)-b,--bmp

Create a .bmp images files using Ghostscript.

〈bolean〉 (default: off)-j,--jpg

Create a .jpg images files using Ghostscript.

〈bolean〉 (default: off)-p,--png

Create a .png transparent image files using Ghostscript.

〈bolean〉 (default: off)-e,--eps

Create a .eps image files using pdftops.

〈bolean〉 (default: off)-s,--svg

Create a .svg image files using pdftocairo.

〈bolean〉 (default: off)-P,--ppm

Create a .ppm image files using pdftoppm.

〈bolean〉 (default: off)-g,--gray

Create a gray scale for all images using Ghostscript. The line behind this options is:

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress \
-sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray

8 How to use 10

〈bolean〉 (default: off)-f,--force

Try to capture \psset{〈code〉} to extract. When using the --force option the script will try to capture
\psset{〈code〉} and leave it inside the preview environment, any line that is between \psset{〈code〉}
and \begin{pspicture} will be captured.

〈bolean〉 (default: off)-np,--noprew

Create images files without preview package. The \begin{preview}…\end{preview} lines are only used
as delimiters for extracting the content without using the package preview. Using this option “only”
the extracted environments are processed and not the whole 〈input file〉, sometimes it is better to use
it together with --force. Alternative name --single.

〈integer〉 (default: 0)-m,--margins

Set margins in bp for pdfcrop.

〈1|2|3〉 (default: 1)-r,--runs

Set the number of times the 〈compiler〉will run on the 〈input file〉 for environment extraction.

〈macro name〉 (default: myverb)--myverb

Set custom verbatim command \myverb. Just pass the 〈macro name〉without “\”.

〈environment name〉 (default: empty)--ignore

Add a verbatim environment to internal list.

〈string〉 (default: images)--imgdir

Set the name of directory for save generated files. Only the 〈name〉 of directory must be passed
without relative or absolute paths.

〈bolean〉 (default: off)--srcenv

Create separate files with “only code” for all extracted environments.

〈bolean〉 (default: off)--shell

Enable \write18〈shell command〉.

〈bolean〉 (default: off)-ni,--norun

Execute the script, but do not create image files. This option is designed to to generate standalone files
or used in conjunctionwith --srcenv and to debug the 〈output file〉. Alternative name --noimages.

〈bolean〉 (default: off)--nopdf

Don’t create a .pdf image files.

〈bolean〉 (default: off)--nocrop

Don’t run pdfcrop in image files.

〈bolean〉 (default: off)-ns,--nosource

Don’t create standalone files.

〈bolean〉 (default: off)-x,--xetex

Using xelatex compiler 〈input file〉 and 〈output file〉.

〈bolean〉 (default: off)--luatex

Using dvilualatex»dvips»ps2pdf for compiler 〈input file〉 and lualatex for 〈output file〉.

〈bolean〉 (default: off)--arara

Use arara4 tool for compiler 〈output file〉. This option is designed to full process 〈output file〉, is
mutually exclusive with --latexmk option.

4 https://ctan.org/pkg/arara

https://ctan.org/pkg/arara

9 Working in another way 11

〈bolean〉 (default: off)--latexmk

Using latexmk5 for process 〈output file〉. This option is designed to full process 〈output file〉, is mutu-
ally exclusive with --arara.

〈bolean〉 (default: off)--zip

Compress the files generated by the script in ./images in .zip format. Does not include 〈output
file〉.

〈bolean〉 (default: off)--tar

Compress the files generated by the script in ./images in .tar.gz format. Does not include 〈output
file〉.

〈bolean〉 (default: off)--bibtex

Run bibtex on the .auxfile (if exists), ismutually exclusivewith --biber option.

〈bolean〉 (default: off)--biber

Run biber on the .bcffile (if exists), ismutually exclusivewith --bibtex option.

8.3 Example of usage

An example of usage from command line:

[user@machine ~:]$ pst2pdf --luatex -e -p -j --imgdir pics test.ltx

Create a ./pics directory (if it does not exist) with all extracted environments converted to image for-
mats (.pdf, .eps, .png, .jpg) in individual files, an stanalone files (.ltx) for all environments extracted,
an output file test-pdf.ltxwith all extracted environments converted to \includegraphics and a sin-
gle file test-fig-all.ltx with only the extracted environments using dvilualatex»dvips»ps2pdf and
preview package for for process test.ltx and lualatex for test-pdf.ltx.

9 Working in another way

By design, the script generates separate images and files following a predetermined routine that has
already been described in this documentation. Anotherway to generate images is as follows:

1. Execute the script using --norun to generate 〈standalone〉 files, move to ./images and generate .pdf
files runing:

[user@machine~:]$ for i in *.tex; do 〈compiler〉 [〈options〉] $i; done
[user@machine~:]$ for i in *.pdf; do pdfcrop [〈options〉] $i $i; done

2. Execute the script using --norun, move to ./images .pdf file runing:

[user@machine~:]$ 〈compiler〉 [〈options〉] test-fig-all.tex
[user@machine~:]$ pdfcrop [〈options〉] test-fig-all.pdf

10 Example files

The pst2pdf documentation provides three example files test1.tex, test2.tex and test3.tex plus
an image file tux.jpg to test and view the script in action. Copy these files to a directory you have
write access to and execute:

[user@machine~:]$ pst2pdf [〈options〉] test1.tex

To see how this works.

5 https://www.ctan.org/pkg/latexmk

https://www.ctan.org/pkg/latexmk

References 12

References

[1] Denis Girou. “Présentation de PSTricks”. In: Cahier GUTenberg 16 (Apr. 1994), pp. 21–70.

[2] Michel Goosens et al. The LATEX Graphics Companion. 2nd ed. Reading, Mass.: Addison-Wesley
Publishing Company, 2007.

[3] David Kastrup. The preview package for LATEX. 2017. url: https://www.ctan.org/pkg/preview.

[4] Rolf Niepraschk. The pst-pdf package. 2019. url: https://www.ctan.org/pkg/pst-pdf.

[5] Heiko Oberdiek. The grfext package. 2017. url: https://www.ctan.org/pkg/grfext.

[6] The LATEX3 Project. graphics - Enhanced support for graphics. 2017. url: https://www.ctan.
org/pkg/graphicx.

[7] Will Robertson. The auto-pst-pdf package. 2009. url: https://www.ctan.org/pkg/auto-pst-
pdf.

[8] Herbert Voß. pst-exa - Typeset PSTricks examples, with pdfTEX. 2017. url: https://www.ctan.
org/pkg/pst-exa.

[9] Herbert Voß. pst-tools – Helper functions. 2012. url: https://www.ctan.org/pkg/pst-tools.

[10] Herbert Voß. PSTricks –Grafik für TEX und LATEX. 7th ed. Heidelberg/Berlin: DANTE– Lehmanns,
2010.

[11] Herbert Voß. PSTricks – Graphics for TEX and LATEX. Cambridge: UIT, 2011.

[12] Herbert Voß. LATEX quick reference. Cambridge: UIT, 2012.

[13] Herbert Voß. The auto-pst-pdf-lua package - Using LuaLATEX with PSTricks. 2018. url: https:
//www.ctan.org/pkg/auto-pst-pdf-lua.

[14] Timothy van Zandt. PSTricks - PostScript macros for generic TEX. 1993. url: http://www.tug.
org/application/PSTricks.

[15] Timothy van Zandt and Denis Girou. “Inside PSTricks”. In: TUGboat 15 (Sept. 1994), pp. 239–
246.

[16] Timothy van Zandt and Herbert Voß. pst-plot - Plot data using PSTricks. 2019. url: https:
//www.ctan.org/pkg/pst-plot.

https://www.ctan.org/pkg/preview
https://www.ctan.org/pkg/pst-pdf
https://www.ctan.org/pkg/grfext
https://www.ctan.org/pkg/graphicx
https://www.ctan.org/pkg/graphicx
https://www.ctan.org/pkg/auto-pst-pdf
https://www.ctan.org/pkg/auto-pst-pdf
https://www.ctan.org/pkg/pst-exa
https://www.ctan.org/pkg/pst-exa
https://www.ctan.org/pkg/pst-tools
https://www.ctan.org/pkg/auto-pst-pdf-lua
https://www.ctan.org/pkg/auto-pst-pdf-lua
http://www.tug.org/application/PSTricks
http://www.tug.org/application/PSTricks
https://www.ctan.org/pkg/pst-plot
https://www.ctan.org/pkg/pst-plot

	Introduction
	License
	Requirements for operation
	How it works
	The input file
	Verbatim contents
	Steps process

	Default extracted environments
	Remove PSTricks code
	Supported image formats
	How to use
	Syntax
	Command line interface
	Example of usage

	Working in another way
	Example files
	References

