
PSTricks

A recursive alignment algorithm – pst-tvz

Trees; v.1.01

June 14, 2011

Package author(s):

Timothy Van Zandt

Herbert Voß

Contents 2

Contents

I. Using the package 3

1. Overview 4

2. Tree Nodes 4

3. Tree orientation 7

4. The distance between successors 8

5. Spacing between the root and successors 10

6. Edges 10

7. Edge and node labels 13

8. Details 15

9. The scope of parameter changes 16

II. Theory 18

10. Introduction 18

11. The graphics description 19

12. Language requirements 22

13. Accounting 22

14. Horizontal mode 23

15. Vertical mode 27

16. Bells and whistles 28

17. The PSTricks implementation 33

18. Examples 34

19. List of all optional arguments for pst-thick 38

References 38

Contents 3

Part I.

Using the package

The node and node connections are perfect tools for making trees, but

positioning the nodes using \rput would be rather tedious, unless you have

a computer program that generates the coordinates.

The files pst-tvz.tex/pst-tvz.sty contains a high-level interface for mak-

ing trees.

It should be noted that the correct result is not guaranteed with every

dvips driver. This package was written for Rokicki’s dvips programme,

which is practically part of every TEX distribution.

thanks to: Olivier Guibé;

1. Overview 4

1. Overview

The tree commands are

\pstree{<root>}{<successors>}

TEX version LATEX version

\psTree{<root>} \begin{psTree}{root}

<successors>\\ <successors> \\

<successors>\\ <successors> \\

.

\endpsTree \end{psTree}

These do the same thing, but just have different syntax. \psTree is the “long” ver-

sion. These macros make a box that encloses all the nodes, and whose baseline passes

through the center of the root. Most of the nodes has a variant for use within a tree and

are called tree nodes (see Section 2).

Trees and tree nodes are called tree objects. The root of a tree should be a single

tree object, and the successors should be one or more tree objects. Here is an example

with only nodes:

root

1 \pstree[radius=3pt]{\Toval{root}}{\TC*
\TC* \TC* \TC*}

There is no difference between a terminal node and a root node, other than their position

in the \pstree{} command.

Here is an example where a tree is included in the list of successors, and hence

becomes subtree:

1 \pstree[radius=3pt]{\Tp}{%

2 \TC*
3 \pstree{\TC}{\TC* \TC*}

4 \TC*}

2. Tree Nodes

In each case, the name of the tree node is formed by omitting "‘node"’ from the end of

the name and adding "T" at the beginning. For example, \psovalnode becomes \Toval.

Here is the list of such tree nodes:

2. Tree Nodes 5

\Tp * [Options]

\Tc * [Options] {dim}

\TC * [Options]

\Tf * [Options]

\Tdot * [Options]

\Tr * [Options] {stuff}

\TR * [Options] {stuff}

\Tcircle * [Options] {stuff}

\TCircle * [Options] {stuff}

\Toval * [Options] {stuff}

\Tdia * [Options] {stuff}

\Ttri * [Options] {stuff}

The syntax of a tree node is the same as of its corresponding “normal” node, except

that:

• There is always an optional argument for setting graphics parameters, even if the

original node did not have one;

• There is no argument for specifying the name of the node;

• There is never a coordinate argument for positioning the node; and

• To set the reference point with \Tr, set the ref parameter.

Figure 1 gives a reminder of what the nodes look like.

The difference between \Tr and \TR (variants of \rnode and \Rnode, respectively)

is important with trees. Usually, you want to use \TR with vertical trees because the

baselines of the text in the nodes line up horizontally. For example:

X

˜̃
X x y

1 $ \pstree[nodesepB=3pt]{\Tcircle{X}}{%

2 \TR{\tilde{\tilde{X}}}

3 \TR{x}

4 \TR{y}} $

Compare with this example, which uses \Tr:

X

˜̃
X x y

1 $ \pstree[nodesepB=3pt]{\Tcircle{X}}{%

2 \Tr{\tilde{\tilde{X}}}

3 \Tr{x}

4 \Tr{y}} $

There is also a null tree node:

\Tn

It is meant to be just a place holder. Look at the tree in Figure page 6. The bottom row

has a node missing in the middle. \Tn{} was used for this missing node.

There is also a special tree node that doesn’t have a “normal” version and that can’t

be used as the root node of a whole tree:

2. Tree Nodes 6

Tree nodes

\Tp

\Tc
\TC

\Tcircle b

\Tdot

\TCircle \Tn \Toval \Ttri \Tdia

\Tf

\Tr \TR

1 \small\psset{armB=1cm, levelsep=3cm, treesep=-3mm,

2 angleB=-90, angleA=90, nodesepA=3pt, nodesepB=0}

3 \def\psedge#1#2{\ncangle{#2}{#1}}

4

5 \psTree[treenodesize=2.5cm]{\Toval{Tree nodes}} \\

6 \Tp~{\tt\string\Tp} \Tc{.5}~{\tt\string\Tc} \TC~{\tt\string\TC}

7 \psTree[levelsep=4cm,armB=2cm]{\Tp[edge=\ncline]} \\

8 \Tcircle{\tt\string\Tcircle} \Tdot~{\tt\string\Tdot}

9 \TCircle[radius=1.2]{\tt\string\TCircle} \Tn[name=Tn]\uput[0](Tn){\tt\string\Tn}

10 \Toval{\tt\string\Toval} \Ttri{\tt\string\Ttri}

11 \Tdia{\tt\string\Tdia}

12 \endpsTree%

13 \Tf~{\tt\string\Tf} \Tr{\tt\string\Tr} \TR{\tt\string\TR}

14 \endpsTree

Figure 1: The tree nodes.

\Tfan * [Options]

This draws a triangle whose base is fansize and whose opposite corner is the prede-

cessor node, adjusted by the value of nodesepA and offsetA. For example:

3. Tree orientation 7

11

⊕

⊕

⊕

1 \pstree[dotstyle=oplus,dotsize=8pt,

nodesep=2pt]{\Tcircle{11}}{%

2 \Tdot

3 \pstree{\Tfan}{\Tdot}

4 \pstree{\Tdot}{\Tfan[linestyle=dashed

]}}

3. Tree orientation

Trees can grow down, up, right or left, depending on the treemode= D, U, R, or L param-

eter.

Here is what the previous example looks like when it grows to the right:

11

⊕

⊕

⊕

1 \pstree[dotstyle=oplus,dotsize=8pt,

2 nodesep=2pt,treemode=R]

3 {\Tcircle{11}}{%

4 \Tdot

5 \pstree{\Tfan}{\Tdot}

6 \pstree{\Tdot}{\Tfan[linestyle=dashed]}}

You can change the treemode in the middle of the tree. For example, here is a tree

that grows up, and that has a subtree which grows to the left:

⊗

⊗

1

2

⊗

3 4

1 \footnotesize

2 \pstree[treemode=U,dotstyle=otimes,dotsize=8pt,

nodesep=2pt]

3 {\Tdot}{%

4 \pstree[treemode=L]{\Tdot}{\Tcircle{1} \

Tcircle{2}}

5 \pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Since you can change a tree’s orientation, it can make sense to include a tree (<treeB>)

as a root node (of <treeA>). This makes a single logical tree, whose root is the root

of <treeB>, and that has successors going off in different directions, depending on

whether they appear as a successor to <treeA> or to <treeB>.

rootB

A1 A2

1 \pstree{\pstree[treemode=L]{\Tcircle{root}}{\Tr

{B}}}{%

2 \Tr{A1}

3 \Tr{A2}}

4. The distance between successors 8

On a semi-related theme, note that any node that creates an LR-box can contain a

tree. However, nested trees of this kind are not related in any way to the rest of the

tree. Here is an example:

b

a b

1 \psTree{\Tcircle{\pstree[treesep=0.4,levelsep

=0.6,

2 nodesepB=-6pt]{\Tdot}{%

3 \TR{a} \TR{b}}}}\\

4 \TC

5 \TC

6 \endpsTree

When the tree grows up or down, the successors are lined up from left to right in the

order they appear in \pstree. When the tree grows to the left or right, the successors

are lined up from top to bottom. As an afterthought, you might want to flip the order of

the nodes. The keyword treeflip=true/falselet’s you do this. For example:

⊗

⊗
1

2

⊗

34

1 \footnotesize

2 \pstree[treemode=U,dotstyle=otimes,dotsize=8pt,

3 nodesep=2pt,treeflip=true]{\Tdot}{%

4 \pstree[treemode=R]{\Tdot}{\Tcircle{1} \

Tcircle{2}}

5 \pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Note that I still have to go back and change the treemode of the subtree that used to

grow to the left.

4. The distance between successors

The distance between successors is set by the key treesep. The rest of this section de-

scribes ways to fine-tune the spacing between successors. You can change the method

for calculating the distance between subtrees by setting the treefit=tight/loose pa-

rameter. Here are the two methods:

tight When treefit=tight , which is the default, treesep is the minimum distance

between each of the levels of the subtrees.

loose When treefit=loose , treesep is the distance between the subtrees’ bounding

boxes. Except when you have large intermediate nodes, the effect is that the hori-

zontal distance (or vertical distance, for horizontal trees) between all the terminal

nodes is the same (even when they are on different levels).1

Compare:

1 When all the terminal nodes are on the same level, and the intermediate nodes are not wider than the

base of their corresponding subtrees, then there is no difference between the two methods.

4. The distance between successors 9

With treefit=loose , trees take up more space, but sometimes the structure of the

tree is emphasized.

Sometimes you want the spacing between the centers of the nodes to be regular even

though the nodes have different sizes. If you set treenodesize to a non-negative value,

then PSTricks sets the width (or height+depth for vertical trees) to treenodesize, for

the purpose of calculating the distance between successors.

For example, ternary trees look nice when they are symmetric, as in the following

example:

x = y x1 = y1 x11 = y11

1 \pstree[nodesepB=-8pt,treenodesize=.85]{\Tc{3pt

}}{%

2 \TR{$x=y$}

3 \TR{$x_1=y_1$}

4 \TR{$x_{11}=y_{11}$}}%$

Compare with this example, where the spacing varies with the size of the nodes:

x = y x1 = y1 x11 = y11

1 \pstree[nodesepB=-8pt]{\Tc{3pt}}{%

2 \TR{$x=y$}

3 \TR{$x_1=y_1$}

4 \TR{$x_{11}=y_{11}$}}%$

Finally, if all else fails, you can adjust the distance between two successors by insert-

ing \tspace{length} between them:

foo and bar

1 \psTree{\Tc{3pt}}\\

2 \Tdia{foo}

3 % \tspace{-0.5}

4 \Toval{and}

5 \Ttri{bar}

6 \endpsTree

5. Spacing between the root and successors 10

5. Spacing between the root and successors

The distance between the center lines of the tree levels is levelsep. If you want the

spacing between levels to vary with the size of the levels, use the * convention. Then

levelsep is the distance between the bottom of one level and the top of the next level

(or between the sides of the two levels, for horizontal trees).

Note: PSTricks has to write some information to your .aux file if using LATEX, or to

\jobname.pst otherwise, in order to calculate the spacing. You have to run your input

file a few times before PSTricks gets the spacing right.

trees. Compare the following example:

George Alexander Kopf VII

Barry Santos

James Kyle

Ann Ada

Terri Maloney

Uwe Kopf

Vera Kan

1 \def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

2 \pstree[treemode=R,varlevelsep]{\Tr{George Alexander Kopf VII}}{%

3 \pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

4 \pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

with this one, were the spacing between levels is fixed:

George Alexander Kopf VII

Barry Santos

James Kyle

Ann Ada

Terri Maloney

Uwe Kopf

Vera Kan

1 \def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

2 \pstree[treemode=R,levelsep=3cm]{\Tr{George Alexander Kopf VII}}{%

3 \pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

4 \pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

6. Edges

Right after you use a tree node command, \pssucc is equal to the name of the node,

and \pspred is equal to the name of the node’s predecessor. Therefore, you can draw a

line between the node and its predecessor by inserting, for example,

\ncline{\pspred}{\pssucc}

To save you the trouble of doing this for every node, each tree node executes

\psedge{\pspred}{\pssucc}

6. Edges 11

The default definition of \psedge is \ncline, but you can redefine it as you please with

\def or LATEX’s \renewcommand.

For example, here I use \ncdiag, with armA=0, to get all the node connections to

emanate from the same point in the predecessor. LATEX users can instead type:

\renewcommand{\psedge}{\ncdiag[armA=0,angleB=180,armB=1cm]}

K

L

M

N

1 \def\psedge{\ncdiag[armA=0,angleB=180,armB=1cm

]}

2 \pstree[treemode=R,levelsep=3.5cm,framesep=2pt

]{\Tc{6pt}}{%

3 \small \Tcircle{K} \Tcircle{L} \Tcircle{M} \

Tcircle{N}}

Here is an example with \ncdiagg. Note the use of a negative armA value so that the

corners of the edges are vertically aligned, even though the nodes have different sizes:

z1 ≤ y

z1 < y ≤ z2

z2 < y ≤ x

x < y

1 $

2 \def\psedge#1#2{\ncdiagg[angleA=180,armA=1cm,nodesep=4pt]{#2}{#1}}

3 % Or: \renewcommand{\psedge}[2]{ ... }

4 \pstree[treemode=R, levelsep=5cm]{\Tc{3pt}}{%

5 \Tr{z_1\leq y} \Tr{z_1<y\leq z_2} \Tr{z_2<y\leq x} \Tr{x<y}

6 }

7 $

Another way to define \psedge{} is with the edge parameter. Be sure to enclose the

value in braces "" if it contains commas or other parameter delimiters. This gets messy

if your command is long, and you can’t use arguments like in the preceding example,

but for simple changes it is useful. For example, if I want to switch between a few node

connections frequently, I might define a command for each node connection, and then

use the edge parameter.

6. Edges 12

1 \def\dedge{\ncline[linestyle=dashed]}

2 \pstree[treemode=U,radius=2pt]{\Tc{3pt}}{%

3 \TC*[edge=\dedge]

4 \pstree{\Tc{3pt}}{\TC*[edge=\dedge] \TC*}

5 \TC*}

You can also set edge=none to suppress the node connection.

If you want to draw a node connection between two nodes that are not direct prede-

cessor and successor, you have to give the nodes a name that you can refer to, using the

name parameter. For example, here I connect two nodes on the same level:

nature

1 \pstree[nodesep=3pt,radius=2pt]{\Toval{nature

}}{%

2 \pstree{\Tc[name=top]{3pt}}{\TC* \TC*}

3 \pstree{\Tc[name=bot]{3pt}}{\TC* \TC*}}

4 \ncline[linestyle=dashed]{top}{bot}

We conclude with the more examples.

root

X

Y

Z

1 \def\psedge{\nccurve[angleB=180, nodesepB=3pt]}

2 \pstree[treemode=R, treesep=1.5, levelsep=3.5]%

3 {\Toval{root}}{\Tr{X} \Tr{Y} \Tr{Z}}

root

x y z

1 \pstree[nodesepB=3pt, arrows=->, xbbl=15pt,

2 xbbr=15pt, levelsep=2.5cm]{\Tdia{root}}{%

3 $

4 \TR[edge={\ncbar[angle=180]}]{x}

5 \TR{y}

6 \TR[edge=\ncbar]{z}

7 $}

root 1 \psset{armB=1cm, levelsep=3cm, treesep=1cm,

2 angleB=-90, angleA=90, arrows=<-, nodesepA=3

pt}

3 \def\psedge#1#2{\ncangle{#2}{#1}}

4 \pstree[radius=2pt]{\Ttri{root}}{\TC* \TC* \TC*
\TC*}

7. Edge and node labels 13

7. Edge and node labels

Right after a node, an edge has typically been drawn, and you can attach labels using

\ncput, \tlput, etc. With \tlput, \trput, \taput, and \tbput, you can align the labels

vertically or horizontally, just like the nodes. This can look nice, at least if the slopes of

the node connections are not too different.

k r

j i

m

1 \pstree[radius=2pt]{\Tp}{%

2 \psset{tpos=.6}

3 \TC* \tlput{k}

4 \pstree{\Tc{3pt} \tlput[labelsep=3pt]{r}}{%

5 \TC* \tlput{j}

6 \TC* \trput{i}}

7 \TC* \trput{m}}

Within trees, the tpos parameter measures this distance from the predecessor to

the successor, whatever the orientation of the true. (Outside of trees it measures the

distance from the top to bottom or left to right nodes.)

PSTricks also sets shortput=tab within trees. This is a special shortput option that

should not be used outside of trees. It implements the following abbreviations, which

depend of the orientation of the true:

Short for:

Char. Vert. Horiz.

^ \tlput \taput

_ \trput \tbput

(The scheme is reversed if treeflip=true .)

above

left right

above

below

1 \psset{tpos=.6}

2 \pstree[treemode=R, thistreesep=1cm,

3 thislevelsep=3cm,radius=2pt]{\Tc{3pt}}{%

4 \pstree[treemode=U, xbbr=20pt]{\Tc{3pt}^{

above}}{%

5 \TC*^{left}

6 \TC*_{right}}

7 \TC*^{above}

8 \TC*_{below}}

You can change the character abbreviations with

\MakeShortTab{<char1>}{<char2>}

The \n*put commands can also give good results:

abo
ve

above

below

1 \psset{npos=.6,nrot=:U}

2 \pstree[treemode=R, thistreesep=1cm,

3 thislevelsep=3cm]{\Tc{3pt}}{%

4 \Tc{3pt}\naput{above}

5 \Tc*{2pt}\naput{above}

6 \Tc*{2pt}\nbput{below}}

7. Edge and node labels 14

You can put labels on the nodes using \nput. However, \pstree won’t take these

labels into account when calculating the bounding boxes.

There is a special node label option for trees that does keep track of the bounding

boxes:

~ * [Options] {stuff}

Call this a “tree node label”.

Put a tree node label right after the node to which it applies, before any node connec-

tion labels (but node connection labels, including the short forms, can follow a tree node

label). The label is positioned directly below the node in vertical trees, and similarly in

other trees. For example:
root

h i j k

1 \pstree[radius=2pt]{\Tc{3pt}\nput{45}{\pssucc}{root}}{%

2 \TC*~{h} \TC*~{i} \TC*~{j} \TC*~{k}}

Note that there is no “long form” for this tree node label. However, you can change

the single character used to delimit the label with

\MakeShortTnput{<char1>}

If you find it confusing to use a single character, you can also use a command sequence.

E.g.,

\MakeShortTnput{\tnput}

You can have multiple labels, but each successive label is positioned relative to the

bounding box that includes the previous labels. Thus, the order in which the labels are

placed makes a difference, and not all combinations will produce satisfactory results.

You will probably find that the tree node label works well for terminal nodes, without

your intervention. However, you can control the tree node labels be setting several

parameters.

To position the label on any side of the node ("l"eft, "r"ight, "a"bove or "b"elow), set:

tnpos=l/r/a/b

root

h i

1 \psframebox{%

2 \pstree{\Tc{3pt}~[tnpos=a,tndepth=0pt,radius=4

pt]{root}}{%

3 \TC*~[tnpos=l]{h}

4 \TC*~[tnpos=r]{i}}}

When you leave the argument empty, which is the default, PSTricks chooses the label

position is automatically.

8. Details 15

To change the distance between the node and the label, set tnsep to a dimension

When you leave the argument empty, which is the default, PSTricks uses the value of

labelsep. When the value is negative, the distance is measured from the center of the

node.

When labels are positioned below a node, the label is given a minimum height of

tnheight. Thus, if you add labels to several nodes that are horizontally aligned, and if

either these nodes have the same depth or tnsep is negative, and if the height of each

of the labels is no more than tnheight, then the labels will also be aligned by their

baselines. The default is \ht\strutbox, which in most TEX formats is the height of a

typical line of text in the current font. Note that the value of tnheight is not evaluated

until it is used.

The positioning is similar for labels that go below a node. The label is given a mini-

mum depth of tndepth. For labels positioned above or below, the horizontal reference

point of the label, i.e., the point in the label directly above or below the center of the

node, is set by the href parameter.

When labels are positioned on the left or right, the right or left edge of the label is

positioned distance tnsep from the node. The vertical point that is aligned with the

center of the node is set by tnyref. When you leave this empty, vref is used instead.

Recall that vref gives the vertical distance from the baseline. Otherwise, the tnyref

parameter works like the yref parameter, giving the fraction of the distance from the

bottom to the top of the label.

8. Details

PSTricks does a pretty good job of positioning the nodes and creating a box whose size

is close to the true bounding box of the tree. However, PSTricks does not take into

account the node connections or labels when calculating the bounding boxes, except

the tree node labels.

If, for this or other reasons, you want to fine tune the bounding box of the nodes, you

can set the following parameters to a dimension:

name default

bbl 0pt

bbr 0pt

bbh 0pt

bbd 0pt

xbbl 0pt

xbbr 0pt

xbbh 0pt

xbbd 0pt
The "‘x"’ versions increase the bounding box by <dim>, and the others set the bound-

ing box to the dimension. There is one parameter for each direction from the center of

the node, left, right, height, and depth.

These parameters affect trees and nodes, and subtrees that switch directions, but not

subtrees that go in the same direction as their parent tree (such subtrees have a profile

rather than a bounding box, and should be adjusted by changing the bounding boxes of

9. The scope of parameter changes 16

the constituent nodes).

Save any fiddling with the bounding box until you are otherwise finished with the tree.

You can see the bounding boxes by setting the showbbox=true/falseparameter to

true. To see the bounding boxes of all the nodes in a tree, you have to set this parameter

before the tree.

In the following example, the labels stick out of the bounding box:

foo

left

bar

right

1 \psset{tpos=.6,showbbox=true}

2 \pstree[treemode=U]{\Tc{5pt}}{%

3 \TR{foo}^{left}

4 \TR{bar}_{right}}

Here is how we fix it:

foo

left

bar

right

1 \psset{tpos=.6,showbbox=true}

2 \pstree[treemode=U,xbbl=8pt,xbbr=14pt]{\Tc{5pt

}}{%

3 \TR{foo}^{left}

4 \TR{bar}_{right}}

Now we can frame the tree:

foo

left

bar

right

1 \psframebox[fillstyle=solid,fillcolor=lightgray,

framesep=14pt,

2 linearc=14pt,cornersize=absolute,linewidth=1.5

pt]{%

3 \psset{tpos=.6,border=1pt,nodesepB=3pt}

4 \pstree[treemode=U,xbbl=8pt,xbbr=14pt]{%

5 \Tc[fillcolor=white,fillstyle=solid]{5pt}}{%

6 \TR*{foo}^{left}

7 \TR*{bar}_{right}}}

We would have gotten the same result by changing the bounding box of the two ter-

minal nodes.

9. The scope of parameter changes

edge is the only parameter which, when set in a tree node’s parameter argument, affects

the drawing of the node connection (e.g., if you want to change the nodesep, your edge

has to include the parameter change, or you have to set it before the node).

As noted at the beginning of this section, parameter changes made with \pstree af-

fect all subtrees. However, there are variants of some of these parameters for making lo-

cal changes, i.e, changes that affects only the current level: thistreesep, thistreenodesize,

thistreefit=tight/loose, and thislevelsep.

For example:

9. The scope of parameter changes 17

1 \pstree[thislevelsep=.5cm,thistreesep=2cm,

2 radius=2pt]{\Tc*{3pt}}{%

3 \pstree{\TC*}{\TC* \TC*}

4 \pstree{\TC*}{\TC* \TC*}}

There are some things you may want set uniformly across a level in the tree, such as

the levelsep. At level <n>, the command \pstreehook<roman(n)> (e. g., \pstreehookii)

is executed, if it is defined (the root node of the whole tree is level 0, the successor tree

objects and the node connections from the root node to these successors is level 1, etc.).

In the following example, the levelsep is changed for level 2, without having to set the

thislevelsep parameter for each of the three subtrees that make of level 2:

X1

X2

Y1

Y2

K1

K2

J1

J2

1 \[

2 \def\pstreehookiii{\psset{thislevelsep=3cm}}

3 \pstree[treemode=R,levelsep=1cm,radius=2pt]{\Tc{4pt}}{%

4 \pstree{\TC*}{%

5 \pstree{\TC*}{\Tr{X_1} \Tr{X_2}}

6 \pstree{\TC*}{\Tr{Y_1} \Tr{Y_2}}}

7 \pstree{\TC*}{%

8 \pstree{\TC*}{\Tr{K_1} \Tr{K_2}}

9 \pstree{\TC*}{\Tr{J_1} \Tr{J_2}}}}

10 \]

10. Introduction 18

Part II.

Theory

This is a description of a recursive alignment algorithm that is useful for

drawing trees and tree-like graphs. It is a generalization of the algorithm

in [4]. The purpose of the algorithm is to recursively construct a description

of a tree in a high-level graphics language with the capabilities of PostScript.

Thus, the algorithm is a preprocessor, and the graphics interpreter is a post-

processor. This division makes the algorithm simpler and more modular. The

postprocessing could be implemented internally, if a low-level graphics de-

scription is required.

Thanks to: Ed Reingold

10. Introduction

A tree is a collection of nodes, organized into levels, with each node’s center assigned

a coordinate position. The center of a node is where edges should point to. Trees have

ragged left and right profiles, because the widths of the levels vary. In horizontal mode,

the algorithm joins trees side by side, aligned by their top levels and fitted together

tightly. In vertical mode, the algorithm stacks trees so that the nodes at the bottom

level of the each tree are centered above the nodes at the top level of the next tree.

The algorithm is implemented in pst-tvz, which is part of the PSTricks package.

PSTricks is a collection of PostScript extensions to TEX. The examples in this paper use

the PSTricks implementation. The syntax of the input file is:

\psTree

~tree objects~ \\

~tree objects~ \\

...

~tree objects~

\endpsTree

Each row except for the last ends in \\. Each row is processed in horizontal mode,

and then the rows are stacked in vertical mode. See Example 1.

11. The graphics description 19

1 \psTree[radius=2pt,nodesep=3pt]

2 \TC* \\

3 \psTree

4 \TC* \\

5 \TC* \TC* \\

6 \TC*
7 \endpsTree

8 \psTree

9 \TC* \TC* \\

10 \TC* \\

11 \TC* \TC* \TC*
12 \endpsTree

13 \endpsTree

Listing 1: Example 1

11. The graphics description

The graphics language should have whatever features one needs to draw the nodes,

edges and labels, plus the ability to define procedures and variables for later reference.

Furthermore, the graphics state should keep track of a current point, which can be

manipulated as follows:

1. Operators gsave and grestore, respectively, push the current point onto a stack

and pop the top current point from that stack.

2. The operator x y RMOVETO shifts the current point x units to the right and y units

down.

Note the convention that the y-direction is down.

The tree graphics description should place (the center of) the top-left node at the

current point, and should not change the current point.

The graphics description consists of these operators plus nodes, node labels, edges

and edge labels. Here is what these objects do:

Node Draws the node, without changing the current point, and defines a procedure,

identified by the node’s name, that can answer queries about where to draw edges.

For example, in PSTricks the nodes can report the coordinate of the center of the

node, and the coordinate of the boundary of the node in any direction from the

center.

Node label Draws a label at a node, by querying the node to find out where to position

the label.

Edge Draws a line between two nodes, querying the nodes to find out where to connect

the lines, and then defines a procedure for finding the coordinate and slope at any

point on the line.

Edge label Puts a label on an edge, using the procedure for finding the coordinate and

slope of a point on the last edge that was drawn.

11. The graphics description 20

A (0, 0) B (100, 0)

C (50,−100)

D (200, 0)

E

l

(150,−100) F (250,−100)

r

G (200,−200)

1 \def\sm{\rm\scriptsize} \footnotesize\sf

2 \psTree[radius=8pt,treesep=2.5cm,levelsep=2.5cm]

3 \psTree

4 \TCircle{A}\nput{r}{\pssucc}{\sm $(0,0)$}

5 \TCircle{B}\nput{r}{\pssucc}{\sm $(100,0)$}

6 \\

7 \TCircle{C}\nput{r}{\pssucc}{\sm $(50,-100)$}

8 \endpsTree

9 \psTree

10 \TCircle{D}~[tnpos=r]{\sm $(200,0)$}

11 \\

12 \TCircle{E}^{l}\nput{r}{\pssucc}{\sm $(150,-100)$}

13 \TCircle{F}~[tnpos=r]{\sm $(250,-100)$}_{r}

14 \endpsTree

15 \\

16 \TCircle{G}~[tnpos=r]{\sm $(200,-200)$}

17 \endpsTree

Listing 2: Example 2

Suppose we want to draw the graph in Example 2. We start by constructing the code

for the subgraph containing nodes A, B and C. The first row (nodes A and B) is:

gsave

~Node A~

100 0 rmoveto

~Node B~

grestore

and the second row is:

gsave

~Node C~

~Line from Node A to Node C~

~Line from Node B to Node C~

grestore

Then we calculate that the top-left node (node C) of the second row is positioned at

(50, 100) from the top-left node (node A) of the top row. The subgraph is thus:

gsave

gsave

11. The graphics description 21

~Node A~

100 0 rmoveto

~Node B~

grestore

50 100 rmoveto

gsave

~Node C~

~Edge from Node A to Node C~

~Edge from Node B to Node C~

grestore

grestore

Similary, the subgraph for nodes D, E and F is:

gsave

gsave

~Node D~

grestore

-50 100 rmoveto

gsave

~Node E~

~Edge from Node A to Node C~

~Edge label~

~Node F~

~Edge from Node B to Node C~

~Edge label~

grestore

grestore

To join these two subgraphs, we calculate that the distance from the top-left node of

{A,B,C} to the top-left node of {D,E,F} is (200, 0). Thus, the subgraph {A,B,C,D,E, F}

is

gsave

~Subgraph A,B,C~

200 0 rmoveto

~Subgraph D,E,F~

grestore

The code for the the bottom row (node G) is:

gsave

~Node G~

~Edge from Node C to Node G~

~Edge from Node E to Node G~

~Edge from Node F to Node G~

grestore

This node is positioned distance (150, 200) from the top-left node of subgraph {A,B,C,D,E, F},

and so the code for the whole graph is

gsave

gsave

~Subgraph A,B,C~

rmoveto(200,0)

~Subgraph D,E,F~

grestore

12. Language requirements 22

150 200 rmoveto

gsave

~Node G~

~Edge from Node C to Node G~

~Edge from Node E to Node G~

~Edge from Node F to Node G~

grestore

grestore

12. Language requirements

I assume that the preprocessing language has operators BEGINGROUP and ENDGROUP that

keep changes to variables local to the group, and GLOBAL which make the next change

global.

There must be enough memory to hold the entire description of the tree in memory,

because the algorithm constructs the description recursively rather than linearly.

I use the following data types:

integer INT

boolean BOOL

string STRING

dimension DIM

list of strings LOS

list of dimensions LOD

Dimensions might be integers or reals, depending on the implementation. The algorithm

only uses integer arithmetic.

13. Accounting

As seen in Section 11, joining subtrees is mainly a problem of finding the distance

between them. If we simply joined them by inserting a fixed amount of space between

their bounding boxes (the way TEX builds boxes from boxes) then we would only need

to know each subtree’s bounding box. Instead, for horizontal mode we need to keep

track of the different sizes of the levels (the profiles). For alignment in vertical mode,

we also need to know the positions of the extreme nodes in the top and bottom levels.

For automatic drawing of edges, we need to keep track of the names of the nodes at the

bottom level (which the top nodes of the next level draw edges to). We keep track of a

few more items that are used by some of the special features described in Section 16.

Here is the list of the tree data. (The distance between nodes refers to the distance

between the centers of the nodes.) There is some redundancy, because it can be faster

to keep track of information in the form it is needed rather than extracting it from other

information.

treecode The graphics description of the tree. (DIM)

width The distance from the top-left node to the top-right node. (DIM)

leftprofile The horizontal distance from the left edge of the bounding box of each

level to the top-left node. (LOD)

14. Horizontal mode 23

rightprofile The horizontal distance from the top-right node to the right edge of the

bounding box of each level. (LOD)

leftbase The horizontal distance from the bottom-left node to the top-left node. (DIM)

rightbase The horizontal distance from the top-right node to the bottom-right node.

(DIM)

center The distance from the top-left node to the center of the top level (for alignment

in vertical mode), or NULL if the center should be the midpoint between the top-left

and the top-right nodes. (DIM)

centerbase The distance from the top-left node to the center of the bottom level (for

alignment in vertical mode), or NULL if the center should be the midpoint between

the bottom-left and bottom-right nodes. (DIM)

height The vertical distance from the top of the bounding box to the top level. (DIM)

depth The vertical distance from the top level to the bottom of the bounding box. (DIM)

leftsize The horizontal distance from the left side of the bounding box to the top-left

node. (DIM)

rightsize The horizontal distance from the top-right node to the right side of the

bounding box. (DIM)

rootnodes A list of the names of the top-level nodes. (LOS)

basenodes A list of the names of the bottom-level nodes. (LOS)

cumlevelsep The distance between the first and last levels. (DIM)

numlevels The number of levels in the tree. (INT)

levelsizes The list of the height and depth of the bounding box of each level, plus, for

every level except the last, the vertical distance to the next level.

See Figure 2.

14. Horizontal mode

In horizontal mode, the trees are aligned by their toplevels (i. e., a tree’s baseline is the

center of its top level). We add trees to the row one-by-one, updating the description of

the row each time.

A row, while under construction, is itself a tree, and each time we add a tree we

update the data for the row. As we construct the graphics description for the row, the

current point is left at the top-left node of the last tree. We keep track of the width of

the last tree (Lastwidth). Each time we add a tree to the row, we face the canonical

problem of determining how much space to leave between the top-right node of the row

and the top-left node of the next tree.

To distinguish the tree data variables of the row from those of the next tree to be

added to the row, we begin the variable names for the row with capital letters. E.g.,

Leftprofile is the leftprofile of the row, and leftprofile is the leftprofile of the next

tree.

When adding the first tree object, we have to simply initialize the row’s variables:

Treecode = treecode

Width = width

Lastwidth = width

Leftprofile = leftprofile

14. Horizontal mode 24

L1

L2

R1

R2

leftbase rightbase

cumlevelsep

leftprofile = { L1 , L2 }

rightprofile = { R1 , R2 }

leftsize width rightsize

height

depth

H1

D1

H2

D2

levelsep1

levelsizes = { H1 , D1 , levelsep1 , H2 , D2 }

Figure 2: Tree data

14. Horizontal mode 25

Rightprofile = rightprofile

Leftbase = leftbase

Rightbase = rightbase

Center = center

Centerbase = centerbase

Height = height

Depth = depth

Leftsize = leftsize

Rightsize = rightsize

Rootnodes = rootnodes

Basenodes = basenodes

Cumlevelsep = cumlevelsep

Numlevels = numlevels

Levelsizes = levelsizes

For subsequent tree object’s, we first find the distance between the top-right node

of the current row and the top-left node of the next object, and we assign the result to

sep. We want the minimum distance between the objects, level-by-level, to be treesep

(a parameter):

sep = MAX { Rightprofile ++ leftprofile } + treesep

where ++ makes a list by adding two lists item-by-item, up to the length of the shortest

list.

Now we can add the new tree’s code to the row’s code:

Treecode = CONCAT

{

Treecode

sep + Lastwidth 0 rmoveto

treecode

}

Then we update the row description. First we set Width to the distance from the

top-left node of the row to the top-left node of the next tree (Width+sep) and we set sep

to the distance from the top-right node of the previous tree to the top-right node of the

next tree (sep+width), because these quantities are used in the calculations of the other

row variables. At the end, we set Width to the actual width of the row (Width+width).

Width = Width + sep

sep = sep + width

Lastwidth = width

Leftprofile = BIMAX { Leftprofile , leftprofile - Width }

Rightprofile = BIMAX { Rightprofile - sep , rightprofile }

IF Numlevels < numlevels

THEN Leftbase = Leftbase - Width

FI

Rightbase = IF Numlevels > numlevels

THEN Rightbase - sep - width

ELSE rightbase

FI

Height = MAX { Height , height }

Depth = MAX { Depth , depth }

Leftsize = MAX { Leftsize , leftsize - Width }

Rightsize = MAX { Rightsize - sep , rightsize }

14. Horizontal mode 26

Rootnodes = CONCAT { Rootnodes , rootnodes }

IF center = NULL

ELSE Center = center + Width

FI

IF Numlevels < numlevels OR (Numlevels = numlevels

AND NOT centerbase = NULL)

THEN Centerbase = centerbase + Width

FI

IF Numlevels < numlevels

THEN Basenodes = basenodes

ELSE IF Numlevels = numlevels

THEN Basenodes = CONCAT { Basenodes , basenodes }

FI

FI

Numlevels = MAX { Numlevels , numlevels }

Levelsizes = BIMAX { Levelsizes, levelsizes }

Width = Width + width

The updating that depends on Numlevels and numlevels can be summarized:

IF Numlevels < numlevels

THEN Leftbase = leftbase - Width

Centerbase = centerbase + Width

Rightbase = rightbase

Basenodes = basenodes

Cumlevelsep = cumlevelsep

ELSE IF Numlevels = numlevels

THEN Basenodes = CONCAT { Basenodes , basenodes }

Rightbase = rightbase

IF centerbase = NULL

ELSE Centerbase = centerbase + Width

FI

ELSE Rightbase = Rightbase - sep

FI

FI

Nodes are treated in the same way. A node is a trivial tree. It is completely de-

scribed by its nodeleftsize (distance from the center to the left side of the bounding

box), noderightsize, nodeheight, nodedepth and name. Here is the value of all the tree

object variables in terms of the leftsize, rightsize, height, depth and name:

treecode = {~node~}

width = 0

leftprofile = {nodeleftsize}

rightprofile = {noderightsize}

leftbase = 0

rightbase = 0

center = NULL

centerbase = NULL

height = nodeheight

depth = nodedepth

leftsize = nodeleftsize

rightsize = noderightsize

rootnodes = {name}

basenodes = {name}

cumlevelsep = 0

15. Vertical mode 27

Tree

Row

Top-left node Center of base

centerbase

Center of topTop-left node

Center

sep

Figure 3: Aligning rows in vertical mode.

numlevels = 1

levelsizes = {height,depth}

15. Vertical mode

Here is the description of vertical mode. We also add rows one at a time, updating

the description of the tree each time. Each row is just a tree object, and a partially

completed tree is just a tree object. Therefore, the problem of joining rows is just the

canonical problem of stacking two tree objects.

The description variables of the row begin with capital letters, and so we revert to

uncapitalized names for the description variables of the tree.

When adding the first row, we simply have to initialize the tree’s variables, setting

treecode=Treecode, etc.

To add the subsequent rows, we first have to find the horizontal displacement of

the top-left node of the next row from the top-left node of the tree. We chose this dis-

placement so that the centerbase" of the tree is aligned with the \verbCenter|

of the row, as shown in Figure 3.

First, calulate centerbase and Center if these are NULL:

IF centerbase = NULL

THEN centerbase = (width + rightbase - leftbase) / 2

FI

IF Center = NULL

THEN Center = width / 2

FI

Then set sep to the horizontal distance between the top-left nodes of the tree and row:

sep = centerbase - Centerbase

Next we calculate the vertical displacement. Each time we add a row, the current

point ends up at the top-left node of the last row. We save the Cumlevelsep of the last

row as lastcumlevelsep. The distance from the bottom level of the tree and the top

level of the next row is the canonical distance between levels, levelsep, which is a

parameter. Hence, the total displacement is

16. Bells and whistles 28

lastcumlevelsep + levelsep

Thus, we add the new row’s code to the tree’s code with:

treecode = CONCAT {

treecode

sep lastcumlevelsep+levelsep rmoveto

Treecode

}

Now we have to update the description. At first, cumlevelsep is set to the distance

from the top level of the tree to the top level of the next row (cumlevelsep + levelsep)

and rightsep is set to the horizontal distance from the top-right node of the tree to the

top-right node of the next row (sep + Width - width), because these are used when

updating the other variables. At the end, cumlevelsep is set to the actual cumlevelsep

(cumlevelsep + Cumlevelsep).

cumlevelsep = cumlevelsep + levelsep

lastcumlevelsep = Cumlevelsep

rightsep = sep + Width - width

leftprofile = CONCAT { leftprofile , Leftprofile - sep }

rightprofile = CONCAT {

rightprofile ,

Rightprofile + rightsep)

}

leftbase = Leftbase - sep

rightbase = Rightbase + rightsep

centerbase = IF Centerbase=NULL

THEN NULL

ELSE Centerbase - sep

FI

height = MAX { height , Height - cumlevelsep }

depth = MAX { depth , Depth + cumlevelsep }

leftsize = MAX { leftsize , Leftsize - sep }

rightsize = MAX { rightsize , Rightsize + rightsep }

rootnodes = rootnodes

numlevels = numlevels + Numlevels

levelsizes = CONCAT { levelsizes , levelsep , Levelsizes }

cumlevelsep = cumlevelsep + Cumlevelsep

16. Bells and whistles

e also need to keep track of the list of nodes in the tree object, and the coordinates of

the nodes. We can measure the coordinates relative to the top-left node. Then when we

join two tree objects, we find the top-left node of the new object, join the lists of nodes,

and update the coordinates with respect to the top-left node. This is simplified by the

fact that once a tree object has been formed, the relative position of the nodes within

that object does not change when the object is nested inside another tree object.

I have so far described the algorithm assuming that the objects in a row are joined

from left to right, and then the rows are stacked from top to bottom, and I will continue

to use this convention throughout. However, the algorithm is the same when the tree

16. Bells and whistles 29

objects grow in different directions; all that differs in pst-tvz is how one joins tree

objects. For example, after calculating the distance between the top-left nodes of two

tree objects, do we position the second object below, to the right, above or to the left of

the first object?

pst-tvz uses a key=value system for controlling the algorithm. Keys are called pa-

rameters. Here are the parameters that control the direction in which the tree is con-

structed:

treemode The treemode is the direction in which trees grow (in which rows are stacked).

The value is stored as an integer:

down -> 0

right -> 1

up -> 2

left -> 3

In vertical trees (treemode is even), the rows are horizontal. In horizontal trees

(treemode is odd), the rows are vertical.

treeflip treeflip is a boolean that sets the direction in which rows are constructed.

When false, the horizontal rows of vertical trees are constructed from left to

right (in the order in which objects appear in the input file), and the vertical rows

of horizontal trees are constructed from top to bottom. When true, the rows of

vertical trees are constructed from right to left, and the rows of horizontal trees

are constructed from bottom to top.

For example:

First

Second

Third
1 \psTree[treemode=R,treeflip=true,nodesep=3pt]

2 \Tc{3pt} \\

3 \Tr{First} \Tr{Second} \Tr{Third}

4 \endpsTree

There are several methods for setting this distance.

If the "treesep*" parameter has been set, then

sep = treesep*

That is, the spacing between the centers of the nodes (and hence between edges) is

fixed.

Otherwise, if the treefit parameter equals tight,

If instead treefit=loose , the distance between the tree objects’ bounding boxes be

treesep. I. e.,

sep = MAX { Rightprofile } + MAX { leftprofile } + treesep

In summary:

sep = IF treesep* = NULL

THEN IF treefit = tight

THEN MAX { Rightprofile ++ leftprofile } + treesep’

ELSE MAX { Rightprofile } + MAX { leftprofile } + treesep

FI

ELSE treesep*
FI

16. Bells and whistles 30

If both objects have more than one level, then increase sep by xtreesep:

IF Numlevels > 1

THEN IF numlevels > 1

THEN ADVANCE sep BY xtreesep

FI

FI

Positive values of xtreesep can be used to highlight the structure of the trees.

Finally, if the user inserts

\addtreesep{~dim~}

before a tree object, then dim is saved in the addtreesep variable, and we add this to

sep:

IF addtreesep = NULL

ELSE ADVANCE sep BY addtreesep

FI

Treecode = CONCAT {

Treecode ,

IFODD Treemode

THEN IF Treeflip=TRUE

THEN 0 sep rmoveto

ELSE 0 -sep rmoveto

FI

ELSE IF Treeflip=TRUE

THEN -sep 0 rmoveto

ELSE sep 0 rmoveto

FI

FI

,

treecode

}

A node calculates its leftsize, rightsize, height, depth and name, and then invokes

\node@makecanonical@tree, which does the assignment given above.

The assignment actually depends on the orientation of the row, because the node

calculates its dimensions for an upright orientation. That is, the assignment given above

is correct if the row is part of a horizontal tree that grows down and if the row adds

objects from left to right.

Here is the general assignment of leftprofile, rightprofile, height and depth:

height = IFCASE Treemode

nodeheight

OR leftsize

OR nodedepth

OR rightsize

FI

depth = IFCASE Treemode

nodedepth

OR rightsize

OR nodeheight

OR leftsize

16. Bells and whistles 31

FI

leftsize = IFODD Treemode

THEN IF Treeflip=TRUE

THEN nodedepth

ELSE nodeheight

FI

ELSE IF Treeflip=TRUE

THEN rightsize

ELSE leftsize

FI

FI

rightsize = IFODD Treemode

THEN IF Treeflip=TRUE

THEN nodeheight

ELSE nodedepth

FI

ELSE IF Treeflip=TRUE

THEN leftsize

ELSE rightsize

FI

FI

leftprofile = { leftsize, }

rightprofile = { rightsize, }

However, if the treenodesize is set, then the profile are set using this value as half

the “width” of the node. That is:

IF treenodesize = NULL

THEN leftprofile = { leftsize, }

rightprofile = { rightsize, }

ELSE leftprofile = { treenodesize, }

rightprofile = leftprofile

FI

Tree objects whose orientation is different from the row are given special treatment.

If the object has the same direction, but a different flip, then we simply swap the left

and right profiles, and related items:

IF Treemode = treemode

THEN IF Treeflip = treeflip

ELSE temp = leftprofile

leftprofile = rightprofile

rightprofile = temp

temp = leftbase

leftbase = rightbase

rightbase = temp

temp = leftsize

leftsize = rightsize

rightsize = temp

center = IF center = NULL

THEN NULL

ELSE width - center

FI

centerbase = IF centerbase = NULL

THEN NULL

ELSE width - centerbase

16. Bells and whistles 32

FI

FI

FI

If the tree objects has a different direction, then we treat the object like a node,

centered at the center of its top level

IF Treemode = treemode

ELSE tree@makecanonical@node

node@makecanonical@tree

FI

Here is the definition of tree@makecanonical@node:

IF center = NULL

THEN center = width / 2

FI

IF center = 0

ELSE SETBOX box =

IFODD treemode

THEN VBOX TO 0 BEGINBOX VSS

ELSE HBOX TO 0 BEGINBOX HSS

FI

BOX box

KERN IF Treeflip = TRUE THEN - FI center

ENDBOX

FI

IF treeflip = TRUE

THEN tempa = rightsize + width - center

tempb = leftsize + center

ELSE tempa = leftsize + center

tempb = rightsize + width - center

FI

IFODD treemode

THEN nodeheight = tempa

nodedepth = tempb

ELSE leftsize = tempa

rightsize = tempb

FI

IFCASE treemode

nodeheight = height

nodedepth = depth

OR leftsize = height

rightsize = depth

OR nodeheight = depth

nodedepth = height

OR leftsize = depth

rightsize = height

FI

We increase "sep" by treeshift:

ADVANCE sep BY treeshift

Now we insert levelsep between the trees, move the row by sep, and add an extra

space of Cumlevelsep so that the total size of the the tree is the same as cumlevelsep.

17. The PSTricks implementation 33

With vertical trees we do this in a \vtop and in horizontal trees we do this in an \hbox.

I. e.,

IFODD treemode

THEN HBOX

{

UNHBOX box

IF treeflip = TRUE

THEN KERN - levelsep

LOWER sep BOX hbox

KERN - Cumlevelsep

ELSE KERN levelsep

RAISE sep BOX hbox

KERN Cumlevelsep

FI

}

ELSE VTOP

{

UNVBOX box

IF treeflip = TRUE

THEN KERN - levelsep

MOVELEFT sep BOX hbox

KERN - Cumlevelsep

ELSE KERN levelsep

MOVERIGHT sep BOX hbox

KERN Cumlevelsep

FI

}

FI

17. The PSTricks implementation

In pst-tvz, we can let TEX keep track of nodes and node coordinates internally. We

store each tree object in a TEX box with zero size, such that the current point is at the

center of the top left node. We create a new tree object in a TEX box, inserting space

between the component objects.

With TEX, we construct the row for both vertical and horizontal trees using an \hbox.

In an \hbox, we can insert horizontal space to separate tree objects in a horizontal row,

and we can lower or raise objects below or above to baseline to separate tree objects in

a vertical row. For horizontal rows (vertical trees), the current insertion point is thus at

the top-left node of the last object, and so we also need to know the width of this object.

This value is stored in wsep after adding a tree object, and then wsep is set to the total

distance between the top-left node of the last object and the top-left node of the current

object. In vertical rows (horizontal trees). the current insertion point is at the top-left

node of the row, and so we also need to know the width of the current row, but this is

already stored in Width. We set wsep to the total distance between the top-left node of

the row and the top-left node of the new object.

IFODD treemode

THEN wsep = Width + sep

ELSE wsep = wsep + sep

18. Examples 34

FI

We add the space and the tree object

IFODD treemode

THEN LOWER wsep

ELSE KERN wsep

FI

BOX box

and update the row description:

18. Examples

Here is how this information is used to position the successors. First, all terminal nodes

are treated as single-level trees. Thus, the canonical successor is a subtree (that has

the same orientation as the parent tree). The successors are positioned so that their

centers line up horizontally. How the distance between successors is calculate depends

on the values of two parameters:

• When "treefit=tight", the subtrees are positioned so that the minimum distance

between levels is "treesep". This is calculated by adding the right profile of the

current group of successors (this profile is with respect to the center of the right-

most successor) to the left profile of the new successor item by item, finding the

maximum of the resulting list, and then adding "treesep".

• When treefit=loose , the subtrees are positioned so that the distance between

their bounding boxes is treesep.

• When also treenodesize is non-negative, the top level of each subtrees is given a

width of <dim>, for the purpose of fitting the subtrees together.

After the row of successors is constructed, and its profiles, height and depth are

calculated, the root object is positioned above the row of successors so that the center of

the root object is centered between the centers of the first and last successors (although

this can be modified). The distance between the root object and the row of successors

is levelsep. The profiles, height and depth of the resulting tree are calculated from the

dimensions of the root object and the dimensions of the row of successors.

The treemode parameter determines the direction in which the tree grows, and the

treeflip parameter determines the direction in which successors are added. The val-

ues of these parameters together are called the tree’s orientation. The terminology

used above is for trees with the default orientation: treemode=D and treeflip=false

(the tree grows down and successors are added from left to right). However, the logi-

cal structure of a tree does not depend on its orientation, and so we can use the same

terminology and accounting system for all trees. Here is the correspondence between

• For a vertical tree that grows up, successors are also added from left to right,

and so the profiles are as described above (although “top” levels are physically at

the bottom of the tree). The “height” and “depth” of tree is the distance from the

center to the physical bottom and top, respectively, of the bounding box.

• For a horizontal tree, successors are added from top to bottom. The “left” profiles

are the physical top profiles, and the “right” profiles are the physical bottom pro-

18. Examples 35

files. The “height” and “depth” of a horizontal tree that grows to the right are the

distances from the center of the tree to the left and right sides, respectively, of its

bounding box. The opposite holds if the tree grows to the left.

• If treeflip=true, then successors are added in the opposite direction, and so the

left and right profiles are switched. “Right” always refers to the direction in which

new successors are added.

A root node can actually be a subtree, and a subtree can have a different orientation

from its parent. Here is how we deal with these special cases:

The canonical root object is a node. Trees are converted to this canonical root object

by calculating their bounding box, and thereby determining their height, width, left and

right sizes.

The canonical successor is a subtree that has the same orientation as the parent tree.

Nodes and trees that grow in other directions are converted to this canonical succcessor

by treating them as single level trees. That is, the left profile is just the left size of the

node or tree (with respect to the orientation of the parent tree), and the right profile is

the right size of the node or tree.

In addition to being a root or successor of a tree, a tree object can be unnested, or

“outer”. The canonical outer object is a node, and it is made into a box whose dimensions

are the size of the node. Trees are converted to this canonical outer. Hence, when a

tree is outer, we only need to remember store its bounding box, and can forget about its

profile.

A subtree that grows in the same direction (which is weaker than having the same

orientation) is called a proper subtree. All other trees—outer, root, or subtrees that

change directions—are not proper.

The three places a tree object can be found—root, successor or outer—are called

modes. By an unfortunate historical accident, the directions trees grow—down, up,

right and left—are also called modes. However, this should not cause confusion in the

code.

The programming implementation of this algorithm is modular. Tree objects, which

are either nodes or (sub)trees, save their dimensions in designated registers and com-

mands. Then they invoke

\ps<object_type>@makecanonical

<object_type> is node or tree. This translates the object’s dimensions into dimensions

of a canonical object for the current mode. Then the object invokes

\ptr@build

which positions the box (\ptr@box) containing the object, also depending on the cur-

rent mode.

Here are the registers and commands that a tree object must set before invoking

\ps<object_type>@makecanonical and \ps<object_type>@build:

Nodes These are all dimension registers, and should not be set globally.

\pst@dima left size

\pst@dimb right size

\pst@dimc height

\pst@dimd depth

18. Examples 36

Trees \PTR@height and \PTR@depth are count registers, measuring sp units. The oth-

ers are lists. These are set globally, so that a tree can use these commands and

registers while it is being constructed. However, changes are actually kept local

with respect to the structure of trees because he values in effect when the tree is

started are restored at the end of the tree.
\PTR@height height

\PTR@depth depth

\PTR@leftprofile left profile

\PTR@rightprofile right profile

\PTR@levelsizes level size

ll

The \ps<object_type>@makecanonical commands translate the values stored in the

commands and registers listed above, and assign the results to the following commands

and registers, for use by \ps<object_type>@build:

Outer mode Outer objects use \pst@dima, \pst@dimb, \pst@dimc and \pst@dimd, like

nodes. These dimensions refer to the physical dimensions. I.e., they do not depend

on the orientation of the object.

Root mode These are all commands.

\psroot@leftsize left size

\psroot@rightsize right size

\psroot@height height

\psroot@depth depth
Successor objects \ptr@height and \ptr@depth are counters, and the remaining are

lists.
\ptr@height height

\ptr@depth depth

\ptr@leftprofile left profile

\ptr@rightprofile right profile

\ptr@levelsizes level size

ll

Except for \pst@dima, etc., used for the dimensions of nodes, root and outer objects,

all values are stored as integers, giving the distance in sp units. Much of the accounting

is done using counters and sp units, because this is more efficient and because counters

are not quite as scarce as dimension registers.

When a subtree is made canonical, we need to know the orientation of both the sub-

tree and the parent tree. We use \psk@Treemode and \if@Treeflip to keep track of

the orientation of the parent tree. These are set by the parent tree when it begins to

process the row of successors. This information is not needed by root objects.

When the value of the levelsep parameter is preceded by *, the size of the levels is

taken into account when setting the distance between levels. This information is only

known after the tree has been constructed, because levels extend beyond the recursive

structure of the trees. That is, the distance between levels of one subtree will depend on

the distance be levels of other (disjoint) subtrees. Therefore, we write this information

to an auxilary file, to be read the next time the main input file is processed. Each level

in a tree must have a unique identifier, so that a subtree can find the distance between

levels by looking up the value for its tree and level. The count register \ptr@ID is used

to indentify trees, and the count register \ptr@levelID is used to identify the levels in

a tree.

18. Examples 37

The logical compenents of a tree do not coincide with the physical components when

subtree appears as a root tree, or as a successor to a parent with a distinct orientation.

E. g., there is no point in trying to synchronize the distance between levels of two sub-

trees that grow in different directions. Hence, in each of these cases, the \ptr@ID is ad-

vanced so that for the purpose of determining the distance between levels, the subtree

has a different indentifier from its parents. For a subtree that appears as a successor,

the identifier should be changed when \psk@treemode does not equal \psk@Treemode.

So that this test works in outer and root mode, the \psk@treemode is set to −1 in these

modes (the treemode is saved as 0, 1, 2 or 3).

Because the value of \ptr@ID can change globally within a tree, a tree’s identifier is

saved as \ptr@id immediately after \ptr@ID is incremented. \ptr@id is an ordinary

command.

In addition to not relying on TEX boxes to do all the accounting, we cannot rely on TEX

grouping to do keep values of certain commands and registers local. This is because

the successors, which are in their own TEX group, must communicate information to

the parent tree as it constructs the row of successors (e. g., by modifying the parent

tree’s \PTR@height). We get around this by saving and restoring the values of certain

commands and paramters just before and after processing the row of sucessors.

There are some special features whose implementation is incorporated into the makecanonical

and build commands, for efficiency:

Adjust bounding boxes Bounding boxes are only adjusted for nodes or for a tree that is

an outer or root object or that changes directions. Such trees are first made into

nodes, via \ptr@makecanonical@outer, and it is at the end of this command that

bounding box adjustment is invoked. The bounding box adjustment is invoked by

nodes just before \psnode@makecanonical.

Show bounding boxes The show bounding box commands are invoked as follows:

• For nodes, just after the bounding box adjustment.

• For trees that invoke \ptr@makecanonical@outer, just after the bounding box

adjustment.

• For subtrees that have the same treemode as their parent, at the beginning

of the \ptr@makecanonical@succ command.

Skip levels The commands for finding the amount of space to be skipped and the pro-

files of the skipped levels are invoked at the beginning of the tree macros, or in

\psnode@makecanonical@succ. The adjustment of the box and profiles takes place

in \ptr@build@succ.

References 38

19. List of all optional arguments for pst-thick

Key Type Default

treemode ordinary D

treeflip boolean true

root ordinary \TC

treesep ordinary 0.75cm

thistreesep ordinary [none]

xtreesep ordinary 0.75cm

thisxtreesep ordinary [none]

treenodesize ordinary -1pt

thistreenodesize ordinary -1pt

treefit ordinary tight

thistreefit ordinary tight

treerep ordinary 1

bbl ordinary [none]

bbr ordinary [none]

bbh ordinary [none]

bbd ordinary [none]

xbbl ordinary [none]

xbbr ordinary [none]

xbbh ordinary [none]

xbbd ordinary [none]

showbbox boolean true

levelsep ordinary 2cm

thislevelsep ordinary [none]

varlevelsep boolean true

treeshift ordinary 0

skiplevels ordinary 0

unary ordinary middle

thisunary ordinary middle

leafalign ordinary true

edge ordinary \ncline

skipedge ordinary

fansize ordinary 1cm

tnsep ordinary

tnyref ordinary

tnheight ordinary \ht \strutbox

tndepth ordinary \dp \strutbox

tnpos ordinary

References

[1] Denis Girou. Présentation de PSTricks. Cahier GUTenberg, 16:21–70, April 1994.

References 39

[2] Michel Goosens, Frank Mittelbach, Sebastian Rahtz, Dennis Roegel, and Herbert

Voß. The LATEX Graphics Companion. Addison-Wesley Publishing Company, Boston,

Mass., second edition, 2007.

[3] Nikolai G. Kollock. PostScript richtig eingesetzt: vom Konzept zum praktischen

Einsatz. IWT, Vaterstetten, 1989.

[4] Edward Reingold and John Tilford. Tidier Drawings of Trees. IEEE Transactions on

Software Engineering, SE-7(2), 1981.

[5] Herbert Voß. PSTricks – Grafik für TEX und LATEX. DANTE – lehmanns media, Hei-

delberg/Hamburg, fifth edition, 2010.

[6] Herbert Voß. PSTricks – Graphics for LATEX. UIT, Cambridge, 1. edition, 2011.

[7] Timothy Van Zandt. multido.tex - a loop macro, that supports fixed-point addition.

CTAN:/macros/generic/multido.tex, 1997.

[8] Timothy Van Zandt and Denis Girou. Inside PSTricks. TUGboat, 15:239–246,

September 1994.

CTAN:/macros/generic/multido.tex

Index

Symbols

~, 14

A

a, 14

armA, 11

.aux, 10

B

b, 14

bbd, 15

bbh, 15

bbl, 15

bbr, 15

D

D, 7, 34

\def, 11

dvips, 3

E

edge, 11, 12, 16

\endpsTree, 4

Environment

– psTree, 4

Extension

– .aux, 10

F

fansize, 6

G

grestore, 19

gsave, 19

H

\hbox, 33

href, 15

J

\jobname, 10

K

Keyvalue

– a, 14

– b, 14

– D, 7

– L, 7

– l, 14

– loose, 8, 16

– R, 7

– r, 14

– tight, 8, 16, 29

– U, 7

Keyword

– armA, 11

– bbd, 15

– bbh, 15

– bbl, 15

– bbr, 15

– edge, 11, 12, 16

– fansize, 6

– href, 15

– labelsep, 15

– levelsep, 10, 17, 27, 32, 34, 36

– name, 12

– nodesep, 16

– nodesepA, 6

– offsetA, 6

– ref, 5

– shortput, 13

– showbbox, 16

– thislevelsep, 16, 17

– thistreefit, 16

– thistreenodesize, 16

– thistreesep, 16

– tndepth, 15

– tnheight, 15

– tnpos, 14

– tnsep, 15

– tnyref, 15

– tpos, 13

– treefit, 8, 9, 29, 34

– treeflip, 8, 13, 29, 34

– treemode, 7, 8, 29, 34, 37

– treemode=, 7

– treenodesize, 9, 31, 34

– treesep, 8, 29, 34

40

Index 41

– treeshift, 32

– vref, 15

– xbbd, 15

– xbbh, 15

– xbbl, 15

– xbbr, 15

– xtreesep, 30

– yref, 15

L

L, 7

l, 14

labelsep, 15

levelsep, 10, 17, 27, 32, 34, 36

loose, 8, 9, 16, 29, 34

M

Macro

– \def, 11

– \endpsTree, 4

– \hbox, 33

– \jobname, 10

– \MakeShortTab, 13

– \MakeShortTnput, 14

– \ncdiag, 11

– \ncdiagg, 11

– \ncline, 11

– \ncput, 13

– \nput, 14

– \psedge, 11

– \psovalnode, 4

– \pspred, 10

– \pssucc, 10

– \psTree, 4

– \pstree, 4, 8, 14, 16

– \pstreehookii, 17

– \renewcommand, 11

– \Rnode, 5

– \rnode, 5

– \rput, 3

– \strutbox, 15

– \taput, 13

– \tbput, 13

– \TC*, 5

– \Tc*, 5

– \TCircle*, 5

– \Tcircle*, 5

– \Tdia*, 5

– \Tdot*, 5

– \Tf*, 5

– \Tfan*, 6

– \tlput, 13

– \Tn, 5

– \Toval*, 5

– \Toval, 4

– \Tp*, 5

– \TR*, 5

– \TR, 5

– \Tr*, 5

– \Tr, 5

– \trput, 13

– \tspace, 9

– \Ttri*, 5

– \vtop, 33

\MakeShortTab, 13

\MakeShortTnput, 14

N

name, 12

\ncdiag, 11

\ncdiagg, 11

\ncline, 11

\ncput, 13

nodesep, 16

nodesepA, 6

none, 12

\nput, 14

O

offsetA, 6

P

Package

– pst-tvz, 18, 29, 33

PostScript

– grestore, 19

– gsave, 19

– RMOVETO, 19

Program

– dvips, 3

\psedge, 11

\psovalnode, 4

Index 42

\pspred, 10

\pssucc, 10

pst-tvz, 18, 29, 33

\psTree, 4

psTree, 4

\pstree, 4, 8, 14, 16

\pstreehookii, 17

R

R, 7

r, 14

ref, 5

\renewcommand, 11

RMOVETO, 19

\Rnode, 5

\rnode, 5

Rokicki, 3

\rput, 3

S

shortput, 13

showbbox, 16

\strutbox, 15

subtree, 4, 8

Syntax

– ~, 14

T

tab, 13

\taput, 13

\tbput, 13

\TC*, 5

\Tc*, 5

\TCircle*, 5

\Tcircle*, 5

\Tdia*, 5

\Tdot*, 5

\Tf*, 5

\Tfan*, 6

thislevelsep, 16, 17

thistreefit, 16

thistreenodesize, 16

thistreesep, 16

tight, 8, 16, 29

\tlput, 13

\Tn, 5

tndepth, 15

tnheight, 15

tnpos, 14

tnsep, 15

tnyref, 15

\Toval, 4

\Toval*, 5

\Tp*, 5

tpos, 13

\TR, 5

\Tr, 5

\TR*, 5

\Tr*, 5

tree objects, 4

treefit, 8, 9, 29, 34

treeflip, 8, 13, 29, 34

treemode, 7, 8, 29, 34, 37

treemode=, 7

treenodesize, 9, 31, 34

treesep, 8, 29, 34

treeshift, 32

\trput, 13

true, 13

\tspace, 9

\Ttri*, 5

U

U, 7

V

Value

– D, 34

– loose, 8, 9, 29, 34

– none, 12

– tab, 13

– tight, 8

– true, 13

vref, 15

\vtop, 33

X

xbbd, 15

xbbh, 15

xbbl, 15

xbbr, 15

xtreesep, 30

Index 43

Y

yref, 15

	Using the package
	Overview
	Tree Nodes
	Tree orientation
	The distance between successors
	Spacing between the root and successors
	Edges
	Edge and node labels
	Details
	The scope of parameter changes

	Theory
	Introduction
	The graphics description
	Language requirements
	Accounting
	Horizontal mode
	Vertical mode
	Bells and whistles
	The PSTricks implementation
	Examples
	List of all optional arguments for pst-thick
	References

